

Copyright 2019 Maria Miller

EDITION 8/2019

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, or by any information storage and retrieval system, without permission in writing from the author.

Copying permission: For having purchased this book, the copyright owner grants to the teacher-purchaser a limited permission to reproduce this material for use with his or her students. In other words, the teacher-purchaser MAY make copies of the pages, or an electronic copy of the PDF file, and provide them at no cost to the students he or she is actually teaching, but not to students of other teachers. This permission also extends to the spouse of the purchaser, for the purpose of providing copies for the children in the same family. Sharing the file with anyone else, whether via the Internet or other media, is strictly prohibited.

No permission is granted for resale of the material.

The copyright holder also grants permission to the purchaser to make electronic copies of the material for back-up purposes.

If you have other needs, such as licensing for a school or tutoring center, please contact the author at https://www.MathMammoth.com/contact.php

Contents

Foreword	6
Chapter 1: Review of the Basic Operations	
Skills Review 1	7
Skills Review 2	8
Skills Review 3	9
Skills Review 4	10

Chapter 2: Expressions and Equations

Skills Review 5	11
Skills Review 6	12
Skills Review 7	13
Skills Review 8	14
Skills Review 9	15
Skills Review 10	16
Skills Review 11	17
Skills Review 12	18
Skills Review 13	19

Chapter 3: Decimals

Skills Review 14	20
Skills Review 15	21
Skills Review 16	22
Skills Review 17	23
Skills Review 18	24
Skills Review 19	25
Skills Review 20	26
Skills Review 21	27
Skills Review 22	28
Skills Review 23	29
Skills Review 24	30
Skills Review 25	31
Skills Review 26	32
Skills Review 27	33

Chapter 4: Ratios

Skills Review 28	34
Skills Review 29	35
Skills Review 30	36
Skills Review 31	37
Skills Review 32	38
Skills Review 33	39
Skills Review 34	40

Chapter 5: Percent

Skills Review 35	41
Skills Review 36	42
Skills Review 37	43
Skills Review 38	44
Skills Review 39	45
Skills Review 40	46
Skills Review 41	47

Chapter 6: Prime Factorization, GCF, and LCM

Skills Review 42	48
Skills Review 43	59
Skills Review 44	50
Skills Review 45	51
Skills Review 46	52

Chapter 7: Fractions

Skills Review 47	53
Skills Review 48	54
Skills Review 49	55
Skills Review 50	56
Skills Review 51	57
Skills Review 52	58
Skills Review 53	59
Skills Review 54	60

Chapter 8: Integers

Skills Review 55	. 61
Skills Review 56	. 62
Skills Review 57	. 63
Skills Review 58	. 64
Skills Review 59	. 65
Skills Review 60	. 66
Skills Review 61	. 67

Chapter 9: Geometry

Skills Review 62	68
Skills Review 63	69
Skills Review 64	70
Skills Review 65	71
Skills Review 66	72
Skills Review 67	74
Skills Review 68	76
Skills Review 69	78
Skills Review 70	79
Skills Review 71	80
Skills Review 72	82
Skills Review 73	84

Chapter 10: Statistics

Skills Review 74	86
Skills Review 75	88
Skills Review 76	90
Skills Review 77	92
Skills Review 78	93
Skills Review 79	95
Skills Review 80	97

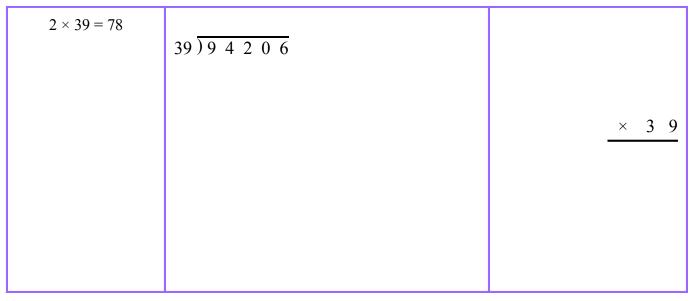
Foreword

Math Mammoth Grade 6 Skills Review Workbook has been created to complement the lessons in *Math Mammoth Grade 6* complete curriculum. It gives the students practice in reviewing what they have already studied, so the concepts and skills will become more established in their memory.

These review worksheets are designed to provide a spiral review of the concepts in the curriculum. This means that after a concept or skill has been studied in the main curriculum, it is then reviewed repeatedly over time in several different worksheets of this book.

This book is divided into chapters, according to the corresponding chapters in the *Math Mammoth Grade* 6 curriculum. You can choose exactly when to use the worksheets within the chapter, and how many of them to use. Not all students need all of these worksheets to help them keep their math skills fresh, so please vary the amount of worksheets you assign your student(s) according to their needs.

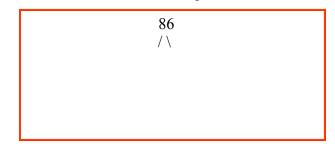
Most of the worksheets are designed to be one page, and includes a variety of exercises in a fun way without becoming too long and tedious.

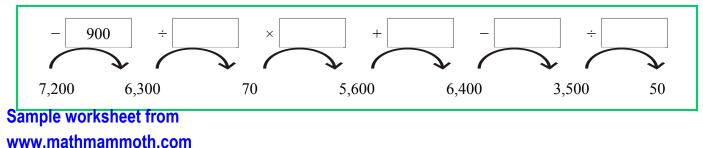

The answer key is available as a separate book.

I wish you success in teaching math!

Maria Miller, the author

- 1. Rewrite the expressions using an exponent, then solve them. You may use a calculator.
 - **a.** $7 \times 7 \times 7 \times 7 \times 7 \times 7$ **b.** $9 \times 9 \times 9 \times 9$
 - c. 80 squared


- **d.** 60 cubed
- 2. Divide. There may be a remainder. You can build a multiplication table for the divisor to help you. Lastly, check your result.


- 3. Greenville High School has 5,928 students. One-eighth of the students walk or ride bikes to school, two-thirds ride the bus, and the rest ride to school in cars. What fraction of the students ride to school in cars?
- 4. Solve. Remember the order of operations!

a. 5,240 - (80 + 60) × 30 =
b. 325 × 3 +
$$\frac{7,200}{90}$$
 =

5. Factor this number to its prime factors.

6. Complete. Note that the operation used is not always the same.

1. a. A train is traveling at 72 miles per hour. Fill in the table:

Miles				72 mi			
Time	10 min	20 min	30 min	1 hour	2 hours	2 ¹ / ₂ hours	3 hours

b. If the train travels steadily at 72 miles per hour, how far will it travel in 8 hours?

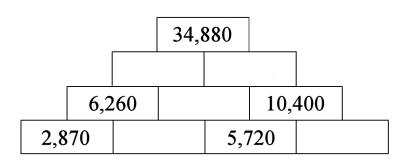
c. *Estimate* how many *hours* it takes the train to travel 465 miles.

2. Divide. Think: how many times does the divisor go into the dividend?

a. $3.2 \div 0.8 =$	c. $0.21 \div 0.03 =$	e. $6.3 \div 0.7 =$
b. $0.54 \div 0.06 =$	d. $0.015 \div 0.005 =$	f. $4.8 \div 0.04 =$

3. Find the missing numbers. The sum of any two adjacent (side-by-side) numbers is the number directly above them.

4. Multiply.


7

2

Х

3 5

8 0

5. Susan bought two gallons of juice. She drank one cup, and then poured the rest into 12 oz bottles. How many *full* bottles of juice did she get?

6. Write in normal form (as a number).

a.
$$4 \times 10^3 + 7 \times 10^6 + 2 \times 10^0$$

b. $8 \times 10^5 + 3 \times 10^7 + 9 \times 10^2 + 5 \times 10^4$

1. Round to the nearest...

Number	514,372	827,491	36,594,136	7,091,512	4,978,627
thousand					
ten thousand					
hundred thousand					
million					

2. Compare and write < , > , or = .

a. ten million 10^7	b. 39,000 10^5	c. 10^8 a billion
d. $10^7 - 1000$ 10 ⁶	e. $10^5 + 10^3$ 10 ⁸	f. 3×10^4 4 × 10 ³

3. Fill in the pattern using a calculator.

8 ¹ =	
8 ² =	
8 ³ =	
84 =	
8 ⁵ =	
8 ⁶ =	

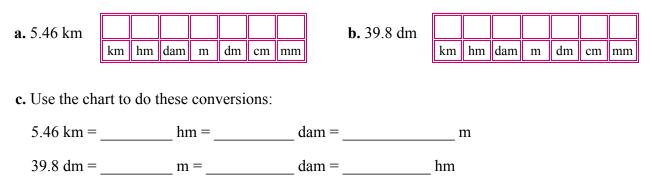
4. Divide. Below each division, check your result.

a. $57 \div 9 = _$ R	b. $71 \div 6 = _$ R
×+=	×+=

5. Express the area (A) as a multiplication, and solve.

Puzzle Corner		+		$=\frac{16}{24}$		+		=
Find the fractions that can go	+		+		+		+	
into the puzzles. Hint: If the answer has a denominator of 24, think what the denominators of		+		$=\frac{28}{45}$		+		=
the two fractions could have been.	=		=		=		=	
	$\frac{17}{36}$		$\frac{49}{60}$		$\frac{41}{70}$		$\frac{23}{24}$	

1. Estimate the result using mental math and rounded numbers. Find the exact value using a calculator. Also, find the error of estimation. In **b.**, round the exact value to two decimal digits.


a. 3,580 × 21,040	b. 48,732 ÷ 4,216
Estimation:	Estimation:
Exact:	Exact:
Error of estimation:	Error of estimation:

2. A certain type of fabric costs \$7.45 a yard, and another costs 3/5 as much. Brenna has \$90. Find out how much Brenna pays if she buys four yards of the more expensive fabric and seven yards of the cheaper fabric.	Find how much the cheaper fabric costs. ↓ Find the total cost of buying the two fabrics. ↓ Find how much money Brenna has left.
How much money does Brenna have left after buying the fabric?	

- 3. Divide. Remember that division can be written using a fraction line as well.
- **a.** $\frac{280}{7} =$ **b.** $\frac{96}{12} =$ **c.** $\frac{3500}{10} =$ **d.** $\frac{760}{20} =$ **e.** $\frac{800}{50} =$
- 4. Find the value of these expressions, using paper and pencil methods. Use your notebook for more space.
 - **a.** 360 7.8 × 34.2
 - **b.** $896 \div (18.6 + 13.4) 19.3$
- 5. Find the missing factors.

a. $0.0 \land ___ = 0.72$ b. $11 \land ___ = 9.9$ c. $0.0 \land ___ = 4.2$		a. 0.8 ×	= 0.72	b. 11 ×	= 9.9	c. 0.6 ×	= 4.2
--	--	-----------------	--------	----------------	-------	-----------------	-------

1. Write the measurements in the metric unit charts.

2. Rewrite each expression using the fraction line, then solve. *Hint: Only whatever comes right after the* ÷ *sign needs to be in the denominator.*

a. $56 \div 7 \cdot 6$	b. $81 \div (9 \cdot 3) \cdot 12$	c. $6 \cdot 8 \div 4 \cdot 5$

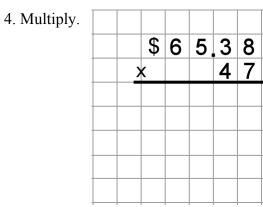
3. A building has three rooms. The dimensions of the rooms are 22 ft by 12 ft, 10 ft by 12 ft, and 12 ft by 12 ft. What is the total area of the building?

4. Express the volume (V) as a multiplication, and solve.

a. A cube with edges 7 cm in length:	b. A cube with edges that are all 4 m long:
V =	V =

5. First convert the fractional parts into like fractions. Then add or subtract.

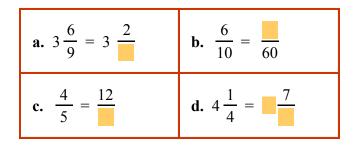
a. $7\frac{4}{9} - 2\frac{6}{15}$	b. $9\frac{7}{12} + 14\frac{3}{8}$	
Sample worksheet from		


www.mathmammoth.com

1. Find a number that fits in place of the unknown.

a. $x \div 80 = 70$

b. $30 \times M = 2,700$


- 3. Continue the patterns for six more numbers.
 - **a.** 2,780,000; 2,820,000; 2,860,000;
 - **b.** 923,752; 923,452; 923,152;

- 6. During a five-day workweek, Mia receives *about* 90 e-mails per day, Damian receives 2/3 as many as Mia, and Stella receives 3/4 as many as Damian.
 - **a.** *About* how many e-mails do they receive in three weeks?
 - **b.** If they work 49 weeks in a year, *about* how many e-mails do they receive during that time?
- 7. Divide in parts, then add or subtract the results.

a.
$$\frac{480+64}{8}$$
b. $\frac{540+60-18}{6}$ c. $\frac{160-70}{5}$ Sample worksheet from

2. Fill in the missing numbers in these equivalent fractions and mixed numbers.

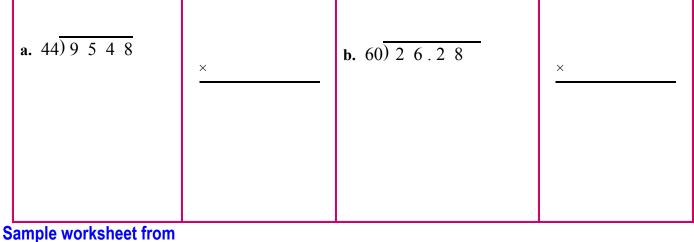
5. From the top, find your way through the maze by coloring factors of 84. You can move right, left, down, or diagonally down.

9	14	13	16
42	44	32	27
12	18	41	22
5	21	11	17
15	7	8	26
36	28	40	33
24	10	3	29

1. Evaluate the expressions when the value of the variable is given.

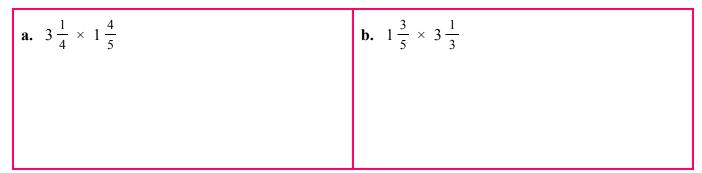
a. $3x + 26$ when $x = 9$	b. $\frac{32}{z} \cdot 15$ when $z = 8$

2. Solve. Use a notebook if necessary. Also, a flowchart showing the steps of the solution may help.

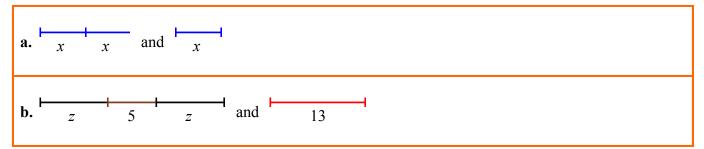

Mariah bought three lamps for \$42 each that had been discounted by 1/3 of their price. Shelly bought three lamps for \$45 each that had been discounted by 2/5 of their price.

a. Find the original prices of the two different kinds of lamps.

b. Who saved more money overall?


How much more?

- 3. It costs \$57 an hour to rent a personal watercraft. Kyle rents one for three hours twice a month. *Estimate* how much he will spend on rental fees in a year.
- 4. Divide. Check your answer by multiplying.



www.mathmammoth.com

- 1. **a.** The area of a square is 81 cm^2 . What is its perimeter?
 - **b.** The volume of a cube is 125 cubic inches. How long is its (one) edge?
- 2. Multiply. You can use estimation to check if your answers are reasonable.

3. Write an expression for the illustration, and simplify it.

4. Match each problem with the term that correctly identifies the number(s) that are underlined.

$250 \div 50 = 5$	sum
<u>32</u> - 17 = 15	divisor
$\underline{70} \times \underline{8} = 560$	minuend
23 + 67 = 90	product
56 – <u>39</u> = 17	addends
$30 \times 80 = 2400$	subtrahend
<u>70</u> \div 5 = 14	quotient
28 + 35 = 63	difference
81 – 23 = <u>58</u>	dividend
$108 \div \underline{12} = 9$	factors

5. Solve using mental math.

a. $40 \times 70 - 20 \times 60$
=
b. $800 \div 5 - 300 \div 10$
=
c. 58 + 73 + 96
=
d. $300 \div 6 \times 400 \div 8$
=