Slope, Part 3

Slope can also be found from a table of values of a linear fur rate of change that you are already familiar with.	ction.	. In th	at cas	e, it is	s the s	ame c	oncep	ot as th	1e
	r	_1	_2	_2	_1	0	1	2	
Example 1. The table gives values for a linear function.	х	4	5	2	1	0	1	2	
	у	13	11	8	7	5	3	1	
Looking for patterns in the <i>x</i> -values and in the <i>y</i> -values, it is easy to see that as the <i>x</i> -coordinates increase by one, the	у-сос	ordinat	tes de	creas	e by 2				
This means the slope is $\frac{\text{change in } y\text{-values}}{\text{change in } x\text{-values}} = \frac{-2}{1} = -2.$									
We will get the same by calculating the slope from any two points $(-3, 11)$ and $(1, 3)$, we can see that the y-value decreases	ooints ses by	given 8, as	in the the x-	e tabl value	e. For incre	exam ases b	iple, u by 4.	ising t	he
So, the slope is $\frac{\text{change in } y\text{-values}}{\text{change in } x\text{-values}} = \frac{-8}{4} = -2.$									

1. Determine the slope of each line from the table of values. You can check your work by graphing.

a.	x	-3	-2	-1	0	1	2	3
	у	-3.5	-2	-0.5	1	2.5	4	5.5

b.	x	-3	-2	-1	0	1	2	3
	у	2	0	-2	-4	-6	-8	-10

c.	x	-4	-2	0	2	4	6	8
	у	5	4	3	2	1	0	-1

			4	\mathbf{v}				
				<i>y</i>				
	 	 				<u> </u>	 	
			1					
←								
←					1			\overrightarrow{x}
•					1			\overrightarrow{x}
-					1		 	\mathbf{x}
•				-	1			\overrightarrow{x}
•				-	1			\overrightarrow{x}
↓				-	1			x
-				-	1			<i>x</i>
+				-	1			<i>x</i>
				-	1			<i>x</i>
+					1			x
+					1			x
+								
↓								

- 2. Find the slope of the line that goes through the points (-2, -3) and (0, 2).
- 3. Enrique calculated the slope of a line that goes through points (-4, 6) and (-2, 1) as follows:

slope =
$$\frac{1-6}{(-4)-(-2)} = \frac{-5}{-2} = 2\frac{1}{2}$$

Find the error in his calculation.

• A horizontal line has a slope of zero.

• A vertical line has <u>no slope</u>.

4. a. Draw any two points on the horizontal line in the image.

Now, calculate the slope using the coordinates of those points (change in *y*-values/change in *x*-values). What do you get?

b. Draw any two points on the vertical line in the image.

Now, *try* to calculate the slope using the coordinates of those points. What happens?

5. Find the slope of the line that goes through the given points. Also, graph the lines.

a. (-3, 5) and (4, 5)

Slope:

b. (-2, 6) and (3, -4)

Slope:

c. (-5, 2) and (-5, -1)

Slope:

6. Determine the slope of each line. Notice carefully the scaling of the grids — it is not the same for each axis, but the way to find the slope is the same: rise over run.

Sample worksheet from www.MathMammoth.com