Factors Versus Multiples

1. a. List 10 multiples of 6 that are less than 100.
b. List 10 multiples of 15 that are less than 200.
c. List 5 multiples of 250 that are greater than 1,200.
2. a. What is the biggest multiple of 4 that is less than $100 ?$
b. What is the smallest multiple of 100 that is more than $1000 ?$
3. Fill in with the words "multiple(s)" or "factor(s)".
>> $25,50,75,100,125$, and 150 are \qquad of 25 .
>> 1, 2, 5, 10, 25, and 50 are \qquad of 50 .
>> Each number has an infinite number of \qquad .
>> Each number has a greatest \qquad .
>> If a number x divides into another number y, we say x is a \qquad of y.
4. a. Draw a line from each number $\begin{array}{lllll}240 & 8 & 48 & 4 & 96\end{array}$
$24 \quad 1 \quad 2$ to the correct box.
b. Which number is a "black sheep"?
(Neither a factor nor a multiple of 24.)
a factor of 24
a multiple of 24
c. Which number is BOTH a factor and a multiple of $24 ? \quad \begin{array}{llllllll}120 & 3 & 30 & 72 & 144 & 6 & 12\end{array}$
5. Find all the factors of the given numbers.
a. 26
b. 32
c. 40
d. 50
6. a. Find five numbers that are multiples of both 10 and 3 .
b. Find five numbers that are multiples of both 6 and 9 .
c. Find five numbers that are multiples of both 4 and 7 .
d. Find five numbers that are multiples of both 8 and 12.
7. 24 is divisible by $1,2,3,4,6,8,12$, and 24 - that is, it has 8 divisors!

Find a number that has even more divisors (it has 9 divisors) and is less than 40.
8. Explain the words with the help of examples.
dividend \qquad
quotient \qquad
factor \qquad

