Divisibility and Factors

Recall that in any multiplication, the numbers that are multiplied are called factors and the result is called a product.
(Even the multiplication " 6×8 " is called a product. You can call it
 the product written, whereas 48 is the product calculated or solved.)

We say that $\mathbf{6}$ is a factor of 48 -- because 6 times some whole number equals 48 . Similarly, $\mathbf{8}$ is a factor of $\mathbf{4 8}$ (because 8 times some whole number equals 48).

From the multiplication fact above we can make two
division facts: $48 \div 6=8$ and $48 \div 8=6$.
These divisions are even divisions (no remainder).
This means that both 6 and 8 are divisors of 48 .

We also say that 48 is divisible by both 6 and 8 .
If a number is a factor of another number, it is also its divisor.

1. How can you check whether a number is a factor of another number?

For example, how would you check whether 7 is a factor of 623 ?
2. Answer the questions, and justify your answer.
a. Is 8 a factor of 100 ? (Yes/No), because
b. Is 9,896 divisible by 7 ? (Yes/No), because
c. Is 9 a divisor of 50? (Yes/No), because
3. Mark said, "I know that 607 is divisible by 13 , because its digits add up to $13(6+0+7=13)$." Is Mark correct? If not, prove to him the truth of the matter.
4. a. How can you tell, without calculations, whether the number $3 \times 4 \times 87$ is divisible by 3 ?
b. Is this number divisible by 12 ? Why or why not?
c. Is $2 \times 758 \times 5$ divisible by 10 ?

Easy divisibility rules (You should already know these.)

A number is divisible by $\mathbf{2}$ if it ends in $0,2,4,6$, or 8 . Such a number is even.
A number is divisible by 5 if it ends in 0 or 5 . For example, 395 is divisible by 5 .
A number is divisible by $\mathbf{1 0}$ if it ends in 0 . For example, 56,930 is divisible by 10 .
A number is divisible by $\mathbf{1 0 0}$ if it ends in " 00 ". For example, 450,000 is divisible by 100.
A number is divisible by $\mathbf{1 0 0 0}$ if it ends in " 000 ". For example, 450,000 is divisible by 1000.
Example 1. Is $2 \times 3 \times 17$ divisible by 10 ?
$2 \times 3 \times 17$ is 6×17. Imagine doing this multiplication in columns. What will be the last digit of the answer?

The answer will end in 2 , because $6 \times 7=42$ ends in 2 . Therefore, the number is not divisible by 10 .
5. Mark an " x " if the number is divisible by $2,5,10,100$, or 1,000 .

Divisible by	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0 0}$
825					
400					
332					

Divisible by	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0 0}$
600,200					
56,000					
307,995					

6. Answer. In each case, explain why or why not it is so (justify your answer).
a. Is 6×28 divisible by 5 ?
b. Is 3×794 divisible by 10 ?
c. Is $3 \times 3 \times 3 \times 3 \times 3$ divisible by 2 ?
d. Is $2 \times 15 \times 2 \times 7$ divisible by 4 ?

Divisibility rules for $\mathbf{3 , 6}$, and 9

A number is divisible by 3 if the sum of its digits is divisible by 3.
Example 2. To check if 93,025 is divisible by 3, add its digits: $9+3+0+2+5=19$. Since 19 is not divisible by 3 , neither is 93,025 . (In fact, $93,025 \div 3=31,008$ R1.)

A number is divisible by 6 if it is divisible by both 2 and 3.

Example 3. The number 756 is divisible by 3, because the sum of its digits is 18 , which is divisible by 3 . Also, it is an even number so it's divisible by 2 . Therefore, it is also divisible by 6 . (In fact, $756 \div 6=126$.)

A number is divisible by 9 if the sum of its digits is divisible by 9.
Example 4. To check if 105,642 is divisible by 9, add its digits: $1+0+5+6+4+2=18$. Since 18 is divisible by 9 , so is 105,642 .
7. Tell whether these numbers are divisible by 3 . If yes, divide the number by 3 (long division).
a. 539
b. 43,719
c. 9,032
8. Change one of the digits in the number 238,882 so that the number is divisible by 3 , but not divisible by 2 .
9. Tell whether these numbers are divisible by 9 . If yes, divide the number by 9 (long division).
a. 888
b. 576
c. 44,082
10. Mark an " x " if the number is divisible by $2,3,5,6$, or 9 .

Divisible by	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{9}$
589					
558					

Divisible by	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{9}$
495					
3,594					

