Multiplying Decimals by Whole Numbers

Multiplying a decimal by a whole number can be solved by repeated addition!

$$4 \times 0.2 = 0.2 + 0.2 + 0.2 + 0.2 = 0.8$$

Since we repeatedly added a number with *tenths*, the answer also has *tenths*.

$$5 \times 0.15 = 0.15 + 0.15 + 0.15 + 0.15 + 0.15 = 0.75$$

Since we repeatedly added a number with <u>hundredths</u>, the answer also has <u>hundredths</u>.

$$3 \times 0.006 = 0.006 + 0.006 + 0.006 = 0.018$$

Since we repeatedly added a number with *thousandths*, the answer also has *thousandths*.

1. Write each multiplication as a repeated addition, and solve.

a. 2 × 0.8 =	b. $3 \times 1.5 =$
c. 4 × 0.03 =	d. $2 \times 0.007 =$

Using multiplication: To solve 6×0.05 , you can multiply $6 \times 5 = 30$ in your head. You are multiplying 6 times 5 *hundredths*. Obviously, the answer is 30 *hundredths*. (Compare this to "6 times 5 apples = 30 apples".)

So, in order for it to be *hundredths*, your answer needs to have *two* decimal digits: it is 0.30.

Similarly, 7×0.008 is going to be *thousandths*, so it needs *three* decimal digits. So, first multiply without the decimal point: $7 \times 8 = 56$, and then figure that the answer has to be 0.056.

2. Put the decimal point in the answer.

a. $10 \times 0.4 = 40$	g. $7 \times 0.05 = 35$	m. $4 \times 0.004 = 16$
b. $100 \times 0.4 = 400$	h. $8 \times 0.05 = 40$	n. $5 \times 0.008 = 40$
c. $1000 \times 0.4 = 400$	i. $10 \times 0.05 = 50$	o. $3 \times 0.012 = 36$
d. $8 \times 0.4 = 32$	$\mathbf{j.} \ \ 10 \times 0.09 = 90$	p. $10 \times 0.003 = 30$
e. $80 \times 0.4 = 320$	k. $100 \times 0.09 = 900$	q. $100 \times 0.003 = 300$
f. $800 \times 0.4 = 3200$	1. $1000 \times 0.09 = 9000$	$\mathbf{r.} \ 1000 \times 0.003 \ = \ \ 3000$