Exponents and Powers

If you multiply the same number by itself repeatedly, such as $5 \times 5 \times 5 \times 5 \times 5 \times 5$, it is **repeated multiplication**. We have a shorthand notation for it: $5 \times 5 \times 5 \times 5 \times 5 \times 5 = 5^6$

Read 5^6 as "five to the sixth power." The number 5 is called the *base*. It tells us what number we are multiplying repeatedly. The little raised number is the *exponent*, and it tells how many times the number is repeatedly multiplied.

We can also solve that $5^6 = 5 \times 5 \times 5 \times 5 \times 5 \times 5 = 15,625$.

These repeated multiplications are called *powers*. For example, $10 \times 10 \times 10 \times 10$ is "ten to the fourth power," and 10^7 is "ten to the seventh power." They are both **powers of ten**.

We have two other special ways to read powers when the exponent is 2 or 3:

- 10^2 is read "ten squared", because it gives us the area of a square with a side length of 10 units.
- 4^3 is read "four cubed", because it gives us the volume of a cube with an edge length of 4 units.
- 1. Read the powers aloud. Then write out the repeated multiplications, and solve.

a. $5^2 = 5 \times 5 = 25$	e. $10^3 =$
b. $2^3 = __ \times __ \times __ = __$	f. $7^2 =$
c. $3^3 =$	g. $2^4 =$
d. $10^2 =$	h. $1^6 =$

2. Write using exponents, and solve.

a. $4 \times 4 \times 4 =$	$\mathbf{e.} \ 1 \times 1 \times 1 \times 1 \times 1 =$
b. $9 \times 9 =$	f. $2 \times 2 \times 2 \times 2 \times 2 =$
c. $10 \times 10 \times 10 \times 10 =$	$\mathbf{g.}\ 3\times3\times3\times3=$
d. five to the third power =	h. zero to the tenth power =

3. Multiplication is repeated addition, and a power is repeated multiplication. Compare.

Sample worksheet from www.mathmammoth.com

4. Write these powers of ten as normal numbers. Notice there is a *shortcut* and a *pattern*!

a. $10^2 =$	e. $10^6 =$	
b. $10^3 =$	f. $10^7 =$	
c. $10^4 =$	e. $10^6 =$ f. $10^7 =$ g. $10^8 =$ h. $10^9 =$	
d. $10^5 =$	h. 10 ⁹ =	
SHORTCUT: In any power of ten, such as 10^8 , the exponent tells us how many the number has after the digit 1.		

Remember? When you multiply numbers ending in zeros, multiply the "parts" without zeros and tag as many zeros onto the result as there are in the factors. Look at these examples:

6,000 × 500	2,300 × 20,000	$200 \times 5,000 \times 70$
Multiply $6 \times 5 = 30$,	Multiply $23 \times 2 = 46$,	Multiply $2 \times 5 \times 7 = 70$,
and tag 5 zeros to the result:	and tag 6 zeros to the result:	and tag 6 zeros to the result:
$30 \leftarrow 00000 = 3,000,000$	$46 \leftarrow 000000 = 46,000,000$	$70 \leftarrow 000000 = 70,000,000$

5. Calculate the products mentally.

a. 200 × 30,000	b. $40 \times 2 \times 200,000$	c. 500,000 × 3,000
d. 100 × 15,000	e. 30 × 900,000	f. $50,000 \times 200 \times 6$
g. $120 \times 20 \times 200 \times 50$	h. $40 \times 20 \times 10 \times 50 \times 200$	i. 50,000 × 20,000 × 8

6. Calculate.

a. $5 \times 10^2 =$	b. $7 \times 10^6 =$	c. $51 \times 10^3 =$
$5 \times 10^3 =$	$2 \times 10^4 =$	$161 \times 10^6 =$
$5 \times 10^4 =$	$6 \times 10^7 =$	$29 \times 10^4 =$

Sample worksheet from www.mathmammoth.com

Why does this work?

It is because we can break down such multiplications so that we multiply the single-digit numbers and the powers of ten separately.

For example, $300 \times 9,000$ is the same as $3 \times 100 \times 9 \times 1,000$. Since we can multiply in any order, we can multiply 3×9 and $100 \times 1,000$ separately, to get $27 \times 100,000$. And that equals 2,700,000.

7. Did you understand the above explanation? Fill in.

8. Find the missing exponent or power of ten.

a. $6 \times 10^{-10} = 6,000$	b. $3 \times 10^{-1} = 300,000$	c. $56 \times$ = 560,000
$71 \times 10^{} = 71,000,000$	$9 \times 10^{} = 90,000,000$	295 × = 2,950,000,000

9. Some challenges. Can you find a shortcut?

a. $10^3 \times 10^2 =$	b. $5 \times 10^2 \times 10^4 =$
c. $10^5 \times 10^3 =$	d. $8 \times 10^4 \times 2 \times 10^3 =$
e. $10^6 \times 10^2 \times 10^2 = 10^{-10}$	f. $10^3 \times 10^5 \times 10^2 \times 10^4 = 10^{-10}$

10. Astronomy involves some really big numbers. Write these numbers in the normal manner.

Pluto's surface area is about 17×10^6 km².

The Sun's average distance from Earth is 15×10^7 km.

Haumea is a dwarf planet located beyond Neptune's orbit. The mass of Haumea is about 4×10^{21} kg.

The Sun's mass is about 2×10^{30} kg and Jupiter's mass is about 2×10^{27} kg. About how many times heavier is the Sun than Jupiter?

Sample worksheet from www.mathmammoth.com