Greatest Common Factor

1. List factors of the two numbers. Circle the common ones. Find the greatest common factor.

a. 20:	b. 21:
30:	30:
GCF:	GCF:
c. 28:	d. 54:
40:	30:
GCE	GCE

2. Underline the smaller number if the smaller number is a factor of the larger. Find the GCF. What can you notice?

a.	<u>2</u> and 8 GCF 2	b. 5 and 25	c. 8 and 10
d.	4 and 16	e. 4 and 10	f. 3 and 15

3. Find the greatest common factor.

a.	10 and 20	b. 10	and 25	C.	50 and 30
d.	16 and 20	e. 36	and 24	f.	40 and 15
g.	18 and 27	h. 18	and 24	i. :	35 and 55

4. Find GCF. Note especially those number pairs that don't have any common factors, except 1.

a.	2 and 4	b. 5 and 6	c. 7 and 8	d. 4 and 25
e.	5 and 16	f. 10 and 12	g. 16 and 21	h. 11 and 12

5. The fractions show the same amount even though they are divided into different kinds of pieces. Ask your teacher how GCF is connected with this.

Sample worksheet from www.mathmammoth.com