Contents

Introduction	5
Warm Up: Mental Math	7
The Order of Operations	9
Equations	11
Review: Multiplication and Division	13
Partial Products, Part 1	16
Partial Products, Part 2	19
The Multiplication Algorithm	22
More Multiplication	27
Review of Long Division	32
A Two-Digit Divisor	35
More Long Division	38
Division with Mental Math	42
Long Division and Repeated Subtraction	44
Review	49
Answers	53

Partial Products, Part 1

You can multiply the thousands, hundreds, tens, and ones separately, and then add to get the final answer. This is called the partial products algorithm , or multiplying in parts .	7×326 7 × <u>300</u> + 7 × <u>20</u> + 7 × <u>6</u> 2,100 + 140 + 42 = 2,282		
The partial products can also be written one under the other, and then added.	$ \begin{array}{r} 2 & 8 & 7 \\ \times & 5 \\ 5 \times 7 \rightarrow & 3 & 5 \\ 5 \times 80 \rightarrow & 4 & 0 & 0 \\ 5 \times 200 \rightarrow & + & 1 & 0 & 0 \\ \hline & 1 & 4 & 3 & 5 \end{array} $		

1. Multiply in parts, then add.

2. Multiply using partial products.

3. Multiply bigger numbers using partial products.

In general, we can express it using symbols: $a \times (b + c) = a \times b + a \times c$.

4. Fill in the missing parts, thinking of the area of the whole rectangle, or of the partial rectangles.

- 5. The total area of this figure is 153 square units, and the area of the yellow part is 117 square units.
 - **a.** What *other* area can you find out using the two given areas (153 and 117)?
 - **b.** Find the missing lengths of the sides.

- 6. Use partial products and mental math to solve the problems:
 - **a.** What is the total cost if you buy seven hammers costing \$26 each?
 - **b.** Paul is a truck driver. One work day, he ended up making three round trips between two towns that are 113 km apart. What was the total distance he drove?
- 7. Which expression or expressions match the problem? You do not have to calculate the answer.

Paul bought 26 algebra textbooks	a. 26 × \$18 + \$8	b. 26 × \$26
for \$18 each and 26 workbooks for		
\$8 each. What was the total cost?	c. $26 \times \$18 + 26 \times \8	d. $26 \times (\$18 + \$8)$

8. For	each two expressions	, decide if the answers	are the same or not.	Do <i>not</i> calculate the answers.
--------	----------------------	-------------------------	----------------------	--------------------------------------

a. $5 \times 37 + 4 \times 37$	b. $9 \times 28 + 7 \times 28$	c. 6 × 128
6×37	$6 \times 28 + 10 \times 28$	$6 \times 120 + 8$
d. $57 \times 89 + 3 \times 89$	e. $8 \times 76 - 5 \times 76$	f. $33 \times 45 - 45$
60 imes 89	2×76	32 × 45

The Multiplication Algorithm

An algor	<i>rithm</i> is a	ı step-by	-step method	for solving a pa	rticular kin	d of pro	blem.		
In this le multipli already k	sson we cation al mow from	practice I gorithn m 4th gr	the standard , which you ade.	1	6	5 4 8 7	35 64 ×	8 7	3 5 6 4 8 × 7
This algo parts. Fo three par At each s	orithm is r exampl ts: 7 × 60 step, you	based of le, 7×64 00, 7×4 may neg	n multiplying 48 is done in 0, and 7 × 8. ed to regroup	in and add.	7 × 8 :	6	$\frac{1}{3}$ $7 \times 4 + 5 =$	6 = 33	4536 7 × 6 + 3 = 45
1. Review	your m	ultiplic	ation skills.						
a.	4 1	5	b.	877	c.	17	52	d.	2615

7

×

4

×

8

×

The process is the same with more digits. Study the example.				
6 1 3 5 9 × 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$5 \times 9 = 45$	$5 \times 5 + 4 = 29$	$5 \times 3 + 2 = 17$	$5 \times 1 + 1 = 6$	$5 \times 6 = 30$

2. Multiply 5- and 6-digit numbers.

8

 \times

a. $\begin{array}{ccc} 1 & 7 & 5 & 5 \\ \times & & 7 \end{array}$	b. $\begin{array}{ccc} 2 & 7 & 8 & 0 & 5 \\ \times & & 3 \end{array}$	c. $1 4 4 1 2 3 \times 5$
d. $\begin{array}{c} 2 7 \ 0 \ 8 \ 1 \ 4 \\ \times \ 3 \end{array}$	e. $5 1 6 2 0$ × 9	f. 239313 × 4

Sample worksheet from www.MathMammoth.com

Multiplication & Division 3 (Blue Series)

3. First estimate, by rounding the number in such a way that you can multiply in your head. Then multiply. Check that your final answer is reasonably close to your estimate.

a. Estimate: 5 × 8,871 ≈		b. Estimate: 4 × 22,399 ≈			
Calculate exactly:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Calculate exactly:	22399 × 4		
c. Estimate: 7 × 87,24 ≈ Calculate exactly:	0	 d. Estimate: 4 × 212,788 ≈ Calculate exactly: 			

4. Jenny's estimate for the problem $3 \times 173,039$ is quite far from her final answer. Figure out where Jenny makes an error or errors.

Sample worksheet from www.MathMammoth.com

A Two-Digit Divisor

Long division works exactly the same way with two-digit divisors as with single-digit divisors. However, since a lot of us cannot quickly multiply mentally by two-digit numbers, it is often helpful to write the multiplication table of the divisor before you divide.

Example 1. This division is by 30, which makes it easy, because the multiplications will be easy to do in one's mind.	$\begin{array}{c} 0 & 2 \\ \hline 30 & 7 & 2 & 6 & 4 \end{array}$ 30 goes into 7 zero times, so we look at 72. How many times does 30 go into 72? Two times, because $2 \times 30 = 60$, and $3 \times 30 = 90$.	$\begin{array}{r} 0 & 2 & 4 \\ 30 & 7 & 2 & 6 & 4 \\ \hline & -6 & 0 \\ \hline & 1 & 2 & 6 \end{array}$ Now, how many times does 30 go into 126? Since 4 × 30 = 120, it is four times.	$\begin{array}{r} 0 & 2 & 4 & 2 \\ \hline 30 & 7 & 2 & 6 & 4 \\ \hline 30 & 7 & 2 & 6 & 4 \\ \hline -6 & 0 & & \\ \hline 1 & 2 & 6 & & \\ \hline -1 & 2 & 0 & & \\ \hline 6 & 4 & & \\ \hline -6 & 0 & & \\ \hline 4 & \\ \\ \text{Lastly, 30 goes into 64} \\ \text{two times, and there is} \\ \text{a remainder of 4.} \end{array}$
Example 2. This division is by 16, so we will write the multiplication table of 16: $3 \times 16 = 48$ $4 \times 16 = 64$ $5 \times 16 = 80$ $6 \times 16 = 96$ $7 \times 16 = 112$ $8 \times 16 = 128$ $9 \times 16 = 144$	0 3 16) 5 5 6 8 16 goes into 5 zero times, so we look at 55. How many times does 16 go into 55? Check in the table on the left. We see it goes into 55 three times.	$\begin{array}{r} 0 & 3 & 4 \\ 16 & 5 & 5 & 6 & 8 \\ \underline{-4 & 8} & 7 & 6 \end{array}$ Now, how many times does 16 go into 76? From the table we can see that it is four times.	$\begin{array}{r} 0 & 3 & 4 & 8 \\ \hline 16 & 5 & 5 & 6 & 8 \\ \hline -4 & 8 & & \\ \hline 7 & 6 & & \\ \hline -6 & 4 & & \\ \hline 1 & 2 & 8 & \\ \hline -1 & 2 & 8 & \\ \hline 0 & \\ \hline \\ Lastly, 16 goes into 128 \\ exactly 8 times, and the division is over. \end{array}$

1. Divide. Check each answer by multiplying.

2. Divide. Check each answer by multiplying.

3. Divide. Writing a list of multiples of the divisor can help. Check each answer by multiplying.

