

Copyright 2017 - 2020 Maria Miller

Edition 1/2020

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, or by any information storage and retrieval system, without permission in writing from the author.

Copying permission: For having purchased this book, the copyright owner grants to the teacher-purchaser a limited permission to reproduce this material for use with his or her students. In other words, the teacher-purchaser MAY make copies of the pages, or an electronic copy of the PDF file, and provide them at no cost to the students he or she is actually teaching, but not to students of other teachers. This permission also extends to the spouse of the purchaser, for the purpose of providing copies for the children in the same family. Sharing the file with anyone else, whether via the Internet or other media, is strictly prohibited.

No permission is granted for resale of the material.

The copyright holder also grants permission to the purchaser to make electronic copies of the material for back-up purposes.

If you have other needs, such as licensing for a school or tutoring center, please contact the author at https://www.MathManmoth.com/contact.php Sample worksheet from https://www.mathmammoth.com

Contents

Foreword	5
----------	---

Chapter 5: Division

Introduction	6
Review of Division	10
Division Terms and Division with Zero	13
Dividing with Whole Tens and Hundreds	15
Order of Operations and Division	18
The Remainder, Part 1	20
The Remainder, Part 2	23
The Remainder, Part 3	25
Long Division 1	27
Long Division 2	31
Long Division 3	34
Long Division with 4-Digit Numbers	38
More Long Division	42
Remainder Problems	45
Long Division with Money	49
Long Division Crossword Puzzle	51
Average	52
Finding Fractional Parts with Division	55
Problems with Fractional Parts	58
Problems to Solve	60
Divisibility	63
Prime Numbers	67
Finding Factors	70
Mixed Review Chapter 5	72
Review Chapter 5	74

Chapter 6: Geometry

Introduction	77
Review: Area of Rectangles	81
Sample worksheet molem Solving: Area of Rectangles	84
https://www.mathPrairmotheonPerimeter	86

Lines, Rays, and Angles	90
Measuring Angles	93
Drawing Angles	100
Estimating Angles	102
Angle Problems	107
Parallel and Perpendicular Lines	112
Parallelograms	117
Triangles	120
Line Symmetry	124
Mixed Review Chapter 6	127
Review Chapter 6	129

Chapter 7: Fractions

Introduction	133
One Whole and Its Fractional Parts	137
Mixed Numbers	140
Mixed Numbers and Fractions	144
Adding Fractions	147
Adding Mixed Numbers	149
Equivalent Fractions	152
Subtracting Fractions and Mixed Numbers	157
Comparing Fractions	161
Multiplying Fractions by Whole Numbers	165
Practicing with Fractions	168
Mixed Review Chapter 7	170
Review Chapter 7	172

Chapter 8: Decimals

Introduction	174
Decimal Numbers—Tenths	177
Adding and Subtracting with Tenths	179
Two Decimal Digits—Hundredths	181
Add and Subtract Decimals in Columns	185
Add and Subtract Decimals Mentally	188
Using Decimals with Measuring Units	192
Mixed Review Chapter 8	194
Sample worksheet from Chapter 8	196
https://www.mathmammoth.com	

Foreword

Math Mammoth Grade 4 comprises a complete math curriculum for the fourth grade mathematics studies. The curriculum meets and exceeds the Common Core standards.

The main areas of study in Math Mammoth Grade 4 are:

- 1. Students develop understanding and fluency with multi-digit multiplication, and use efficient multiplication procedures to solve problems.
- 2. They develop understanding of division to find quotients involving multi-digit dividends (long division), and they solve word problems involving division, including division with a remainder.
- 3. Students develop an understanding of fraction equivalence and some operations with fractions. They learn to add and subtract fractions with same denominators, and to multiply a fraction by a whole number.
- 4. Students learn the concept of angle. They draw and identify lines and angles, and classify shapes by properties of their lines and angles.

Additional topics we study are place value, time, measuring, graphs, and decimals.

This book, 4-B, covers division (chapter 5), geometry (chapter 6), fractions (chapter 7), and decimals (chapter 8). The rest of the topics are covered in the 4-A worktext.

Some important points to keep in mind when using the curriculum:

• The two books (parts A and B) are like a "framework", but you still have a lot of liberty in planning your child's studies. Chapters 1, 2, and 3 should be studied in order, and Chapter 3 (multiplication) should be studied before Chapter 5 (division). However, you can be flexible with chapters 4 (time and measuring) and 6 (geometry), and schedule them earlier or later. Also, most lessons from chapters 7 and 8 (fractions and decimals) can be studied earlier; however the topic of finding parts with division should naturally be studied only after mastering division.

Math Mammoth is mastery-based, which means it concentrates on a few major topics at a time, in order to study them in depth. However, you can still use it in a *spiral* manner, if you prefer. Simply have your child study in 2-3 chapters simultaneously. This type of flexible use of the curriculum enables you to truly individualize the instruction for your child.

- Don't automatically assign all the exercises. Use your judgment, trying to assign just enough for your child's needs. You can use the skipped exercises later for review. For most children, I recommend to start out by assigning about half of the available exercises. Adjust as necessary.
- For review, the curriculum includes a worksheet maker (Internet access required), mixed review lessons, additional cumulative review lessons, and the word problems continually require usage of past concepts. Please see more information about review (and other topics) in the FAQ at https://www.mathmammoth.com/faq-lightblue.php

I heartily recommend that you view the full user guide for your grade level, available at https://www.mathmammoth.com/userguides/

And lastly, you can find free videos matched to the curriculum at https://www.mathmammoth.com/videos/

I wish you success in teaching math! Maria Miller, the author

Chapter 5: Division Introduction

The fifth chapter of *Math Mammoth Grade 4* includes lessons on division, long division, remainder, average, divisibility, and problem solving. It is a long chapter, because division and long division are "in focus" in fourth grade. Therefore, feel free to mix the lessons from this chapter with lessons from some other chapter, essentially using the curriculum in a somewhat spiral manner. This is especially advisable if your student has difficulties retaining the material or starts feeling bored with these topics.

For further help in teaching these topics, check out the free videos matched to the curriculum at https://www.mathmammoth.com/videos/. Remember not to automatically assign all the exercises. Instead, adjust the amount of exercises according to the student's needs. The rest can be used later for review.

We start out by reviewing basic division facts by single-digit numbers (such as $24 \div 4$ or $56 \div 7$). After that, we study terminology of division and dividing numbers by whole tens and hundreds (such as $400 \div 20$).

The lesson *Finding Fractional Parts with Division* shows an important relationship between fractions and division. For example, we can find 3/4 of a number by first finding 1/4 (dividing by 4) and then multiplying the result by 3.

Next students practice the order of operations again-this time with division as one of the operations.

Then we study the concept of remainder, preparing students for the upcoming lessons on long division. At first, the concept of remainder is presented visually. Soon, students solve simple division problems with a remainder, written with the long division symbol (or long division "corner", as I like to call it).

Next comes a set of lessons intended to teach long division in several small steps. We start with divisions where each of the digits in the dividend (thousands, hundreds, tens, and ones) can be divided evenly by the divisor (for example, $3096 \div 3$). As the next step, there is a remainder in the ones. Then, the divisions have a remainder in the tens. Finally, there is a remainder in the hundreds and in the thousands, and this completes the step-by-step learning process for long division. The lessons also include lots of word problems to solve.

After long division, we study the concept of average, which is a nice application of division, and problems that involve a fractional part of a quantity (such as 3/4 of \$600). Students get help from visual bar models to solve the problems.

The last section deals with elementary number theory. We study basic divisibility rules (though not all of them), prime numbers, and finding all factors of a given two-digit number.

n0000

anon

The Lessons in Chapter 5

_	page	span
Review of Division	10	3 pages
Division Terms and Division with Zero	13	2 pages
Dividing with Whole Tens and Hundreds	15	3 pages
Order of Operations and Division	18	2 pages
The Remainder, Part 1	20	3 pages
The Remainder, Part 2	23	2 pages
The Remainder, Part 3	25	2 pages
Long Division 1	27	4 pages
Long Division 2	31	3 pages
Sampledworksheet from	34	4 pages
https://www.mathmanmath.com	38	4 pages

More Long Division	42	3 pages
Remainder Problems	45	4 pages
Long Division with Money	49	2 pages
Long Division Crossword Puzzle	51	1 page
Average	52	3 pages
Finding Fractional Parts with Division	55	3 pages
Problems with Fractional Parts	58	2 pages
Problems to Solve	60	3 pages
Divisibility	63	4 pages
Prime Numbers	67	3 pages
Finding Factors	70	2 pages
Mixed Review Chapter 5	72	2 pages
Review Chapter 5	74	2 pages

Helpful Resources on the Internet

DIVISION CONCEPT AND DIVISION FACTS

The Forty Frogs Game

Learn to find fractions of sets by dividing a set of baby frogs into equal groups. http://www.mathactivities.net/frogs.htm

Patty's Paints Division

Help Patty paint cars by solving basic division questions. Lastly, drive your newly painted car in a fun race! http://www.multiplication.com/games/play/pattys-paints-division

Flying High Division

Fly your plane safely through the storm clouds by answering the division facts correctly. http://www.multiplication.com/games/play/flying-high-division

Times or Divide Bingo

A useful class teaching resource on division and multiplication by 10 and 100. It includes decimals and is suitable for use on an interactive whiteboard. http://www.topmarks.co.uk/Flash.aspx?f=bingotimesordivide

Leftovers-game with beads

Practice division with this fun dice game! http://www.learn-with-math-games.com/long-division-games-for-the-classroom.html

Fraction of a Number

Practice finding a fraction of a given number. http://www.mathplayground.com/fractions_fractionof.html

Multiply & Divide Whole Numbers by 10, 100, 1000

Practice multiplying and dividing by 10, 100, and 1,000 with this interactive online quiz. https://www.khanacademy.org/math/cc-fifth-grade-math/cc-5th-place-value-decimals-top/cc-5th-mult-div-whole-num-10-100-1000/e/mult-div-whole-numbers-by-10-100-1000

Division with remainders (mental math) — online practice

Practice division with remainders with this ad-free online practice program at MathMammoth.com website. Also **Sample** awo **bksheet**gfrom most browsers. Includes the option for both timed and non-timed practice. https://www.mathmanth.com/practice/division-remainder.php

Order of Ops

Save seven members of a Royal Family from prison by using your order of operation skills. The program uses a visual representation of a stairway to show how the mathematical expression gets shorter at each step. https://mrnussbaum.com/order-ops-online-game

Free customizable worksheets for the order of operations

Choose from five operations and parentheses. You can choose the number range, number of problems, and more. http://www.homeschoolmath.net/worksheets/order_of_operations.php

ITP Remainders

This ITP sets up an empty grid into which you can place counters. Removing or highlighting extra counters will change the calculation displayed.

http://mathsframe.co.uk/en/resources/resource/67/itp_remainders

Moving Remainders Division Game

Practice your division skills with this printable board game for two or more players. https://www.lauracandler.com/wp-content/uploads/2018/06/MovingRemaindersGame.pdf

Division with Remainders

Practice modeling division with remainders in the quotients in this interactive online activity. http://www.harcourtschool.com/activity/elab2004/gr4/5.html

LONG DIVISION

MathFrog Dividerama!

Interactive long division practice. Guided help available. http://cemc2.math.uwaterloo.ca/mathfrog/english/kidz/div5.shtml

Mr. Martini's Classroom: Long Division

An interactive long division tool. http://www.thegreatmartinicompany.com/longarithmetic/longdivision.html

Drag-and-Drop Math

Practice division interactively. Choose "Division", 2-digit dividend, and 1-digit divisor. https://mrnussbaum.com/drag-n-drop-math-online

Long Division Millionaire Game

Learn to divide large numbers up to thousands. Can you answer all 15 questions? http://www.kidsmathtv.com/free/math-games/sixth-grade/long-division/millionaire/game.html

Bike Racing Math Average

Race your motorcycle against others while answering questions about average. Correct answers speed you up! http://www.mathnook.com/math/bike-racing-math-average.html

Division Jump — board game

Practice division of one-digit numbers into two, three, and four-digit numbers. http://www.learn-with-math-games.com/division-activities.html

Long Division Quiz

Practice dividing four-digit numbers by single-digit numbers in this online quiz. http://i4c.xyz/nmenbdv

Double-Division.org

Double-division is a form of the long division algorithm that takes away the guesswork of finding how many times the divisor goes into the number to be divided. Also called 1-2-4-8 division.

Sarhfpte worksheetifromg/ https://www.mathmammoth.com

Short Division

This is a web page that explains short division in detail. Short division is the same algorithm as long division, but some steps are only done in your head and not written down.

http://www.themathpage.com/ARITH/divide-whole-numbers.htm

FACTORS AND PRIMES

Arrays and Factors

Drag rectangles to show the factorizations of a given number on a grid. http://www.shodor.org/interactivate/activities/FactorizeTwo/

Find all the factors of a given number — online practice

An ad-free online practice program at MathMammoth.com. Also works as an offline program in most browsers. Choose the minimum and maximum numbers and the amount of practice problems. https://www.mathmammoth.com/practice/factorfind.php

Factor Game

Choose a number from the game board, and your opponent gets all the numbers that are its proper factors. Adjust the number of rows and columns on the board to get a more challenging (and interesting) game. The game can be adapted to be played offline.

http://illuminations.nctm.org/Activity.aspx?id=4134

Sliding Tile Factorization Game

Slide a number over another to capture it, but you can only do this if the number you slide is a factor of the other. Number 1 is only supposed to be used to capture prime numbers. http://www.visualmathlearning.com/Games/sliding factors.html

Octopus Factors

Move counters up the legs of an octopus but only when the number on the circle is a multiple of the number on the card.

https://web.archive.org/web/20171024183705/http://www.counton.org/games/map-numbers/octopus/

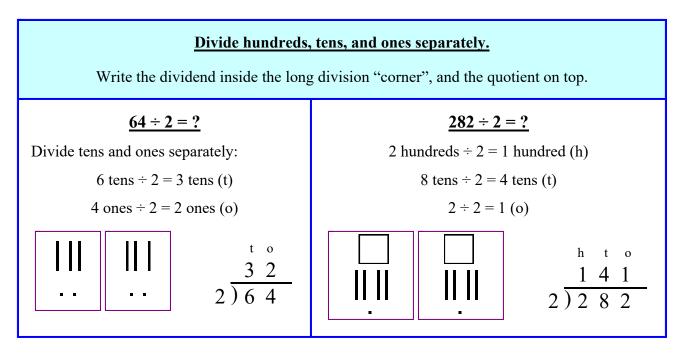
Not a Factor

Choose a number that is *not* a factor of the given number. http://www.helpingwithmath.com/resources/games/target_factors01/not_factor.html

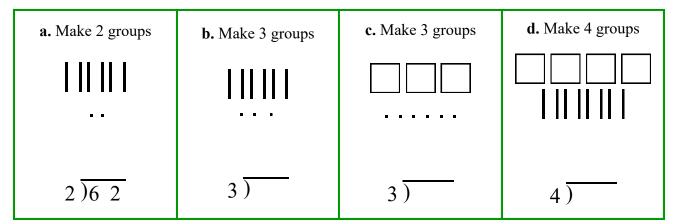
Product Game

Choose factors, and the product of those gets colored in on the game board. The player who gets four products in a row wins. This game can easily be adapted to be played offline, with paper and colored pencils. http://illuminations.nctm.org/Activity.aspx?id=4213

Primes, Factors and Divisibility—Explorer at CountOn.org

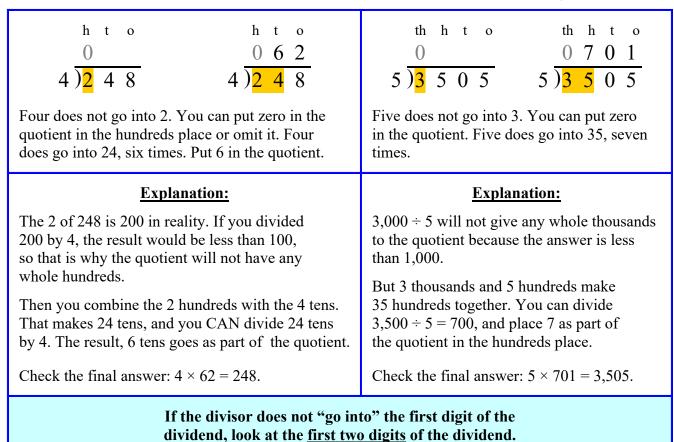

Lessons explaining divisibility tests, primes, and factors. https://web.archive.org/web/20180319072651/http://www.counton.org:80/explorer/primes/

Factoring Calculator


This tool lists all the factors of a given number and shows an interesting visual that pairs the various factors of the number. You can even find all the factors of very large numbers, and it is fun to experiment with! http://www.dadsworksheets.com/factoring-calculator.html

(This page intentionally left blank.)

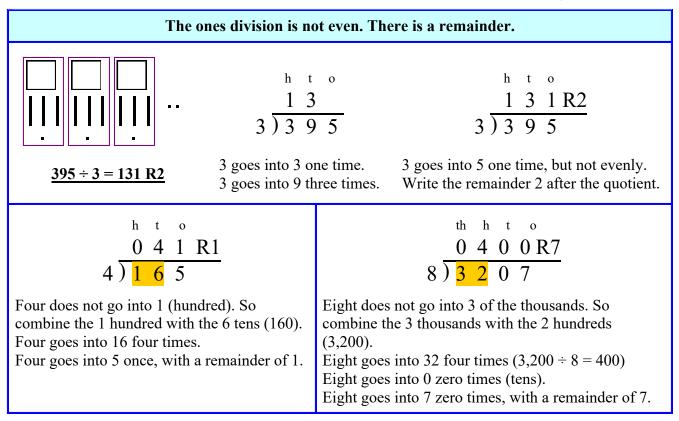
Long Division 1


1. Make groups. Divide. Write the dividend inside the "corner" if it is missing.

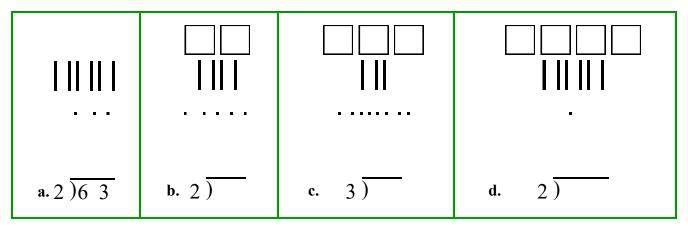
2. Divide thousands, hundreds, tens, and ones separately.

a.
$$4\overline{)8\ 4}$$
 b. $3\overline{)3\ 9\ 3}$
 c. $3\overline{)6\ 6\ 0}$
 d. $4\overline{)8\ 0\ 4\ 0}$

 e. $3\overline{)6\ 6}$
 f. $2\overline{)6\ 0\ 4\ 2}$
 g. $3\overline{)3\ 3\ 0}$
 h. $4\overline{)4\ 8\ 0\ 4}$



3. Divide. Check your answer by multiplying the quotient and the divisor.


A 1

https://www.mathmammoth.com

a. $3 \frac{0}{11} \frac{4}{2} \frac{3}{3}$	b. 4)284
c. 6)360	d. 8)248
e. 2)1 8 4	f. 7)427
g. 3)1 8 3 3	h. $4)2404$
i. 7)4970 Sample worksheet from	j. 5)4505

4. Divide into groups. Find the remainder.

5. Divide. Indicate the remainder if any.

a. $4\overline{)8\ 4\ 7}$ b. $2\overline{)6\ 9}$ c. $3\overline{)3\ 6\ 7}$ d. $4\overline{)8\ 9}$

e. $2\overline{)1\ 2\ 1}$ f. $6\overline{)1\ 8\ 0\ 5}$ g. $7\overline{)2\ 1\ 5}$ h. $8\overline{)2\ 4\ 8\ 2}$

In the problems before, you just wrote down the remainder of the ones. Usually, we write down the subtraction that actually finds the remainder. Look carefully:

$$\begin{array}{r} h & t & o \\ \hline 0 & 6 & 1 \\ 4 & 2 & 4 & 7 \\ \hline -4 \\ 3 \end{array}$$

$$\begin{array}{r} \text{th h t o} \\ 0 \ 4 \ 0 \ 2 \\ 4 \ 1 \ 6 \ 0 \ 9 \\ \hline - 8 \\ 1 \end{array}$$

When dividing the ones, 4 goes into 9 two times.

Multiply $2 \times 4 = 8$, write that eight under the 9,

and subtract. This finds us the remainder of 1.

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4 = 4$, write that four under the 7, and subtract. This finds us the remainder of 3.

Check: $4 \times 61 + 3 = 247$

. .

Check: $4 \times 402 + 1 = 1,609$

- 6. Practice some more. Subtract to find the remainder in the ones. Check your answer by multiplying the divisor times the quotient, and then adding the remainder. You should get the dividend.
- a. $3\overline{)1\ 2\ 8}$ b. $3\overline{)9\ 5}$

c.
$$6\overline{)4\ 2\ 6\ 7}$$
 d. $4\overline{)2\ 8\ 4\ 5}$

e. $5\overline{)5\ 5\ 0\ 7}$ f. $2\overline{)8\ 0\ 6\ 3}$

7. Divide these numbers mentally. Remember, you can always check by multiplying!

a. 440 ÷ 4 =	b. 3600 ÷ 400 =	c. $824 \div 2 =$
820 ÷ 2 =	369 ÷ 3 =	560 ÷ 90 =

(This page intentionally left blank.)

Divisibility

A number <i>n</i> is divisible by another number <i>m</i> , if the division $n \div m$ is exact (no remainder).		
For example, $18 \div 3 = 6$, so 18 is divisible by 3.		
Also, 18 is divisible by 6, because we can write the other division $18 \div 6 = 3$. So, 18 is divisible by <i>both</i> 6 and 3. We say 6 and 3 are divisors of 18.		
You can use long division to check if a number is divisible by another. For example, $67 \div 4 = 16$, R3. There is a remainder, so 67 is <i>not</i> divisible by 4. Also, from this we learn that neither 4 nor 16 are divisors of 67.	$ \begin{array}{r} 1 \ 6 \\ 4 \ \overline{67} \\ -4 \\ \overline{27} \\ -2 \ 4 \\ \overline{3} \end{array} $	

1. Divide and determine if the number is divisible by the other number.

a. 21 ÷ 3 =	b. 40 ÷ 6 =	c. $17 \div 5 =$	d. $84 \div 7 =$
Is 21 divisible by 3?	Is 40 divisible by 6?	Is 5 a divisor of 17?	Is 7 a factor of 84?

2. Answer the questions. You may need long division.

a. Is 98 divisible by 4?	b. Is 603 divisible by 7?	c. Is 3 a factor of 1,256?		
nple worksheet from ps://www.mathmammoth.	com			

In any multiplication, the numbers that are much called factors and the result is called a produ	- 1						
For example, since $6 \times 7 = 42$, 6 and 7 are fac	,						
1	From this multiplication fact we can write two divisions: $42 \div 6 = 7$ and $42 \div 7 = 6$. So, this means that 6 and 7 are also divisors of 42.						
From this we can notice the following:							
If a number is a factor of anot	If a number is a factor of another number, it is also its divisor.						
There is yet one more new word to learn that	ties in with all of this: multiple.						
We say 42 is a multiple of 6 , because 42 is so	We say 42 is a multiple of 6 , because 42 is some number times 6 (namely $\underline{7} \times 6$).						
And of course 42 is also a multiple of 7, becau	And of course 42 is also a multiple of 7, because 42 is some number times 7 (namely, $\underline{6} \times 7$)!						
3. Fill in.							
We know that $8 \times 9 = 72$. So, 8 is a	of 72, and so is 9.						
Also, 72 is a of 8, and 7	72 is a of 9.						
And, 72 is by 8 and by	9.						
4. Fill in.							
a. Is 5 a factor of 55?	b. Is 8 a divisor of 45?						
Yes, because $_$ \div $_$ $=$ $_$.	Yes, because $_$ \div $_$ $=$ $_$. No, because $_$ \div $_$ $=$ $_$.						
c. Is 36 a multiple of 6?	d. Is 34 a multiple of 7?						
, because ÷ =	, because ÷ =						
e. Is 7 a factor of 46?	f. Is 63 a multiple of 9?						
, because	, because						

Multiples of 6 are all those numbers we get when we multiply 6 by other numbers. For example, we can multiply 0×6 , 7×6 , 11×6 , 109×6 , and so on. The resulting numbers are all multiples of six.

In fact, the skip-counting pattern of 6 gives us a list of multiples of 6:

0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, and so on.

5. **a.** Make a list of multiples of 11, starting at 0 and continue at least to 154.

Sample worksheet from b. Make a list of multiples of 111, starting at 0. Continue as long as you can in this space! https://www.mathmammoth.com

Divisibility by 2

Numbers that are divisible by 2 are called **even** numbers. Numbers that are NOT divisible by 2 are called **odd** numbers.

Even numbers end in 0, 2, 4, 6, or 8. Every second number is even.

Divisibility by 5

Numbers that end in 0 and 5 are divisible by 5.

For example, 10, 35, 720, and 3,675 are such numbers.

6. Mark an "x" if the number is divisible by 2 or by 5.

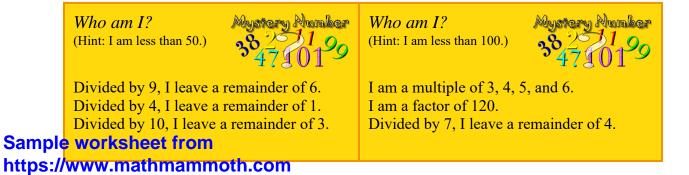
number	divis	sible	number	divisible divisible number	number divisible		number	divis	sible		
number	by 2	by 5	number	by 2	by 5	number	by 2	by 5	number	by 2	by 5
750			755			760			765		
751			756			761			766		
752			757			762			767		
753			758			763			768		
754			759			764			769		

Divisibility by 10

Numbers that end in 0 are divisible by 10.

For example, 10, 60, 340, and 2,570 are such numbers.

7. Mark an "x" if the number is divisible by 2, by 5, or by 10.


number		divisible		number	divisible		number		divisib	le	
number	by 2	by 5	by 10	number	by 2	by 5	by 10	number	by 2	by 5	by 10
860				865				870			
861				866				871			
862				867				872			
863				868				873			
864				869				874			

If a number is divisible by 10, it ends in a zero, so it is ALSO divisible by _____ and ___

8. **a.** Write a list of numbers that are divisible by 2, from 0 to 60.

	This is also a list of	of 2.	
]	b. In the list above, <i>underline</i> those numbers that What do you notice?	t are divisible by 4.	
(e. In the list above, <i>color</i> those numbers that are What do you notice?	divisible by 6.	
	1. Which numbers are divisible by both 4 and by	6?	
9. :	a. Write a list of numbers that are divisible by 3,	from 0 to 60.	
	This is also a list of	of 3.	
l	b. In the list above, <i>underline</i> those numbers that What do you notice?	t are divisible by 6.	
(e. In the list above, <i>color</i> those numbers that are What do you notice?	divisible by 9.	
10.	Use the lists you made in (8) and (9). Find num	bers that are divisible by <i>both</i> 2 and 9.	

- 11. What number is a factor of every number?
- 12. Twenty is a multiple of 4. It is also a multiple of 5. It is also a multiple of four other numbers. Which ones?

(This page intentionally left blank.)

Chapter 6: Geometry Introduction

We start our study of geometry by reviewing the third grade concepts of area and the perimeter of rectangles. Students also apply these concepts in various problems, including problems where they write simple equations and a problem where they explore all possible perimeters for a given area.

Note: Students will need a ruler and a protractor throughout the chapter.

The focus of the chapter is <u>angles</u>. Students learn about lines, rays, and angles; and about acute, right, obtuse, and straight angles. They learn how to measure and draw angles with a protractor. We also study angle problems where students write simple equations. The lesson *Estimating Angles* has an optional section on turning in an angle, which can be challenging, so feel free to omit it if you wish.

The lesson *Parallel and Perpendicular Lines* also ties in with the topic of angles, because two lines are perpendicular if they form a right angle. After that, we study parallelograms and other quadrilaterals in more detail, paying attention to their angles and lengths of sides.

We also study triangles and classify them according to their angles (acute, obtuse, or right triangles). Classifying triangles according to their sides (equilateral, isosceles, or scalene) will be studied in 5th grade. The last (and easy) topic in this chapter is line symmetry.

The lessons include quite a few drawing exercises which can be done on blank paper, in a notebook, or in the worktext (for most). Please stress to the student to always use a ruler and other proper tools, such as a protractor or a triangular ruler, so the drawings will be as accurate as possible. Some exercises may mention to only sketch something, in which case it is okay to not use any drawing tools.

Geometry is full of strange-sounding words. I suggest that student(s) keep a geometry notebook, where they draw picture(s) and text to explain every new concept or term. This will help them to remember those terms. They can also do the drawing exercises in the notebook. Encourage the students to be creative so that the notebook becomes their own special work. You can even give them credit for it.

enan

nage

I	page	span
Review: Area of Rectangles	81	3 pages
Problem Solving: Area of Rectangles	84	2 pages
Review: Area and Perimeter	86	4 pages
Lines, Rays, and Angles	90	3 pages
Measuring Angles	93	7 pages
Drawing Angles	100	2 pages
Estimating Angles	102	5 pages
Angle Problems	107	5 pages
Parallel and Perpendicular Lines	112	5 pages
Parallelograms	117	3 pages
Triangles	120	4 pages
Line Symmetry	124	3 pages
Mixed Review Chapter 6	127	2 pages
Samplewoorksheet.from	129	4 pages
https://www.mathmammoth.com		

Helpful Resources on the Internet

AREA AND PERIMETER

Free Worksheets for Area and Perimeter

Create worksheets for the area and the perimeter of rectangles/squares with images, word problems, or problems where the student writes an expression for the area using the distributive property. https://www.homeschoolmath.net/worksheets/area perimeter rectangles.php

Area and Perimeter Dominoes

Match your domino tiles with domino tiles on the "table" that have the same value in this fun, interactive two-player game https://www.turtlediary.com/game/calculating-area-and-perimeter.html

Shape Explorer

Find the perimeter and area of odd shapes on a rectangular grid. http://www.shodor.org/interactivate/activities/ShapeExplorer/

Math Playground: Party Designer

You need to design areas for the party, such as a crafts table, food table, seesaw, and so on, so that they have the given perimeters and areas.

https://www.mathplayground.com/PartyDesigner/index.html

Area and Perimeter Builder

Create your own rectangular shapes using colorful blocks and explore the relationship between perimeter and area. You can choose to show the side lengths to understand how a perimeter works. You can also use two work areas (grids) to compare the area and perimeter of two shapes side-by-side. Lastly, challenge yourself in the game screen to build shapes or find the area of various figures. http://phet.colorado.edu/sims/html/area-builder/latest/area-builder_en.html

Geometry Area/Perimeter Quiz from ThatQuiz.org

An online quiz, about the area and perimeter of rectangles, triangles, and trapezoids. You can modify the quiz parameters to your liking, for example to omit a certain shape, or instead of solving for perimeter/area, you solve for an unknown side when the perimeter/area is given. http://www.thatquiz.org/tq-4/?-j1200b-lc-p0

Area: Missing Side Length Quiz

Practice finding the value of the unknown side in this 10-question quiz. http://www.thatquiz.org/tq-4/?-j8001-lc-p0

Area and Perimeter of Rectangles and Squares

A 10-question quiz with varying questions concerning the area and perimeter of rectangles and squares. https://www.ck12.org/assessment/ui/?test/view/practice/geometry/square-and-rectangle-area-and-perimeter-practice

ANGLES

Angles and Their Measures Matching Game

Practice matching angles to their angle measures in this interactive online game. https://www.mathmammoth.com/practice/angles-matching

Online Protractor

Investigate angles and the use of protractors. https://web.archive.org/web/20180219193040/http://www.amblesideprimary.com/ambleweb/mentalmaths/protractor.html

Measuring Angles

Practice measuring angles with a protractor. https://www.mathplayground.com/measuringangles.html

Draw Angles - Khan Academy

Use a protractor to construct angles. https://www.khanacademy.org/math/on-sixth-grade-math/on-geometry-spatial-sense/on-angles-polygons/e/drawing-angles

Topmarks - Angles activity

Squirt the dog with water by dragging the correct angle onto the screen. http://www.topmarks.co.uk/Flash.aspx?b=maths/angles

Fruit Picker

Try to pick 6 apples in 6 shots by turning at the correct angle. http://www.fruitpicker.co.uk/activity/

Estimating Angles

Estimate the target angle. The closer you get to the target angle the more points you will score. https://nrich.maths.org/1235

Draw Perpendicular and Parallel Lines - Interactive

Learn about perpendicular and parallel lines and practice drawing them. https://www.mathsisfun.com/perpendicular-parallel.html

Parallel and Perpendicular Lines in Shapes Quiz

Classify the lines as parallel, perpendicular, or neither. https://www.studyladder.com/games/activity/parallel-and-perpendicular-lines-in-shapes-28459

Turtle Pond

Guide a turtle to a pond using commands, which include turning him in certain angles or moving him a specific distance. http://illuminations.nctm.org/Activity.aspx?id=3534

SHAPES / POLYGONS

Polygon Matching Game

Learn all the common polygons by playing this fun, timed matching game. https://www.mathplayground.com/matching_shapes.html

Polygon Vocabulary

A matching game. http://www.quia.com/cc/2758.html

Interactive Quadrilaterals

See all the different kinds of quadrilaterals "in action". You can drag the corners, see how the angles change, and observe what properties do not change.

Sample/worksheetffrom/geometry/quadrilaterals-interactive.html https://www.mathmammoth.com

Interactive Parallelogram

Drag the parallelogram and learn about its properties, angles, and sides. http://www.mathwarehouse.com/geometry/quadrilaterals/parallelograms/interactive-parallelogram.php

Interactive Triangles Tool

Read about triangles, and then play with them to become familiar with them from all angles. https://www.mathsisfun.com/geometry/triangles-interactive.html

Triangles Splat

"Shoot" the triangles as their names appear on the screen. Choose "Right, Acute, Obtuse". http://www.sheppardsoftware.com/mathgames/geometry/shapeshoot/triangles_shoot.htm

Classifying Triangles Drag-and-Drop Game

Drag each triangle in the correct basket before the time runs out! http://www.math-play.com/classifying-triangles/Triangles-Drag-and-Drop-Game.html

Lines of Symmetry

Match the corresponding lines of symmetry. http://www.sheppardsoftware.com/mathgames/geometry/shapeshoot/SymmetryLinesShapesShoot.htm

Symmetry Shapes Shoot

Practice identifying symmetrical shapes by clicking on them. http://www.sheppardsoftware.com/mathgames/geometry/shapeshoot/SymmetryShapesShoot.htm

Line Shoot

Learn about lines of symmetry the fun way in this line-shoot geometry math game. http://www.sheppardsoftware.com/mathgames/geometry/shapeshoot/line_shoot.htm

GENERAL

Interactivate! Tessellate

An online, interactive tool for creating your own tessellations. Choose a shape, then edit its corners or edges. The program automatically changes the shape so that it will tessellate (tile) the plane. Then push the tessellate button to see your creation!

http://www.shodor.org/interactivate/activities/Tessellate

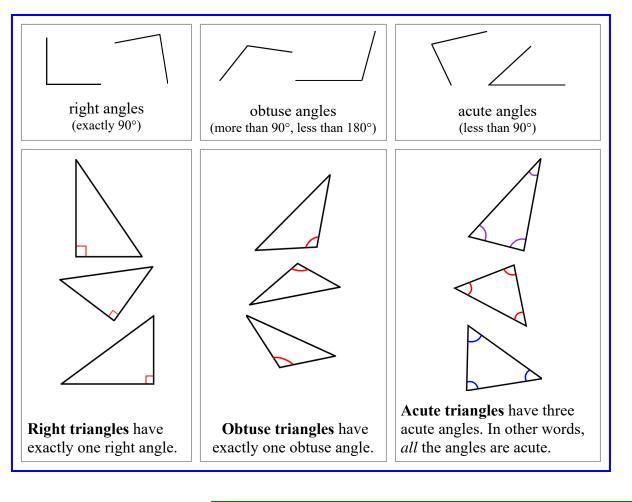
Patch Tool

An online activity where the student designs a pattern using geometric shapes. http://illuminations.nctm.org/Activity.aspx?id=3577

Polygon Playground

Drag various colorful polygons to the work area to make your own creations! http://www.mathcats.com/explore/polygons.html

Geometry Worksheets


Worksheets about complementary and supplementary angles, parallel, perpendicular, and intersecting lines, types of angles, basic shapes, area and perimeter of rectangles, and parts of a circle. http://www.dadsworksheets.com/worksheets/basic-geometry.html

Space Logic

Write a program that will guide the space rover to its target. Watch out for the boulders! Sample Worksheet from d.com/space_logic.html https://www.mathmammoth.com

(This page intentionally left blank.)

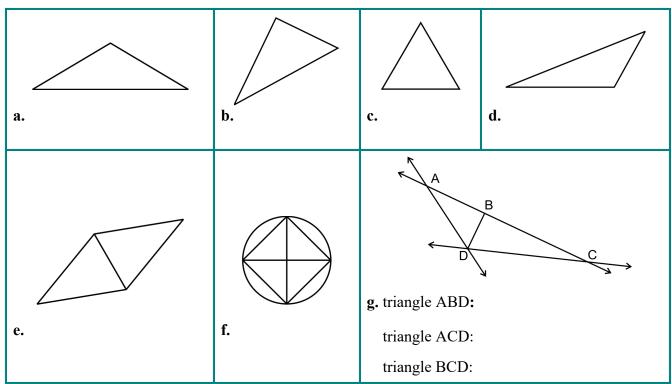
Triangles

- 1. **a.** Draw a right *angle*. Then make it into a right *triangle* by drawing in the third side.
 - **b.** Draw another, different right triangle.
 - **c.** A right triangle has one right angle. Are the other two angles in a right triangle acute, right, or obtuse?

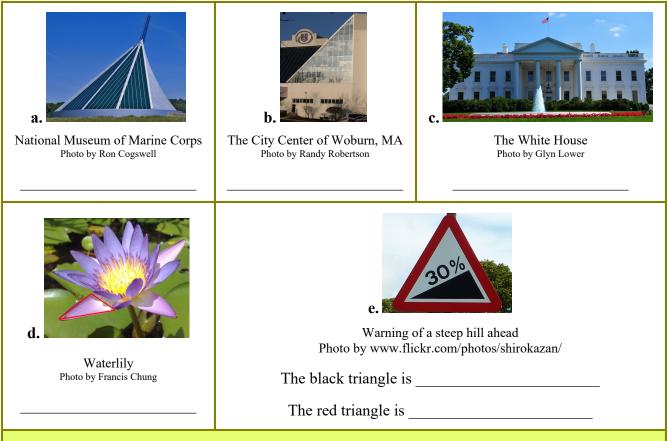
2. a. Draw an obtuse angle. Then make it into an obtuse triangle by drawing in the third side.
b. Draw another, different obtuse triangle.
c. An obtuse triangle has one obtuse angle. Are the other two angles in an obtuse triangle acute, right, or obtuse?

An obtuse triangle has one obtuse angle. The other two angles are

- 3. **a.** Draw any acute triangle.
 - **b.** Measure its angles.

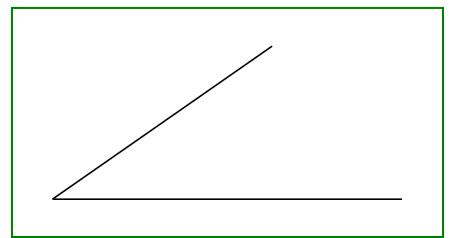

They measure _____°,

_____°, and _____°.


4. Observe all that you have done in this lesson thus far, and fill in the blanks below.

	Right triangles have exactly one,
	and the other two angles are
	Obtuse triangles have exactly one,
	and the other two angles are
	rkshetrianglenhave angles.
https://ww	w.mathmammoth.com

5. Label the triangles in the pictures as right, acute, or obtuse.



6. Label the triangles in the pictures as right, acute, or obtuse.

Sample Windksheepfusom nd right triangles outside in nature, in buildings, in signs, and so on! https://www.mathmammoth.com

- 7. a. Draw a triangle with 35° and 40° angles. The 35° angle is already drawn for you.
 - **b.** Measure the third angle. It is ______ degrees.
 - **c.** What kind of triangle is it? (acute, right, obtuse)

- 8. **a.** Draw a triangle with 125° and 40° angles.
 - **b.** Measure the third angle. It is ______ degrees.
 - **c.** What kind of triangle is it? (acute, right, obtuse)

9. **a.** Draw a triangle with 55° and 35° angles.

- **b.** Measure the third angle. It is ______ degrees.
- **c.** What kind of triangle is it? (acute, right, obtuse)

New Terms

- an acute triangle an obtuse triangle
- a right triangle

(This page intentionally left blank.)

Chapter 7: Fractions Introduction

In third grade, students have studied equivalent fractions and compared some easy fractions. In fourth grade, it is time to expand their knowledge of fraction topics. We study:

- mixed numbers
- adding and subtracting like fractions and mixed numbers with like fractional parts (sums where the denominators are the same, such as 5/6 + 3/6 or 1 2/3 + 2 1/3)
- equivalent fractions (for example, 2/3 = 8/12)
- comparing fractions
- multiplying a fraction by a whole number (for example $5 \times \frac{1}{2}$)

Then in fifth grade, students tackle *all* four operations with fractions. This chapter is laying groundwork for that. The lessons here are important also because they are the basis for understanding decimal numbers, which is the topic of the next chapter.

In this grade, we continue studying fractions and their operations with the help of visual models. In addition to the visuals in the lessons, you can optionally also use fraction manipulatives, but they are not required.

Visual models help children build a strong conceptual understanding of fraction operations. While we do study some actual rules of fraction arithmetic in this chapter, we also want to avoid presenting fraction math as a list of computational rules to be learned by rote memory. If students only memorize these rules, then they will also easily confuse them (eventually), because there are so many of them. The rules become *shortcuts* for ideas that are already understood, but we don't want to start with them. The goal is to let the ideas and concepts "sink in" first, and then study the shortcuts.

A friendly reminder: don't automatically assign all the exercises. As always, use your judgment.

The Lessons in Chapter 7

ł	page	span
One Whole and Its Fractional Parts	137	3 pages
Mixed Numbers	140	4 pages
Mixed Numbers and Fractions	144	3 pages
Adding Fractions	147	2 pages
Adding Mixed Numbers	149	3 pages
Equivalent Fractions	152	5 pages
Subtracting Fractions and Mixed Numbers	157	4 pages
Comparing Fractions	161	4 pages
Multiplying Fractions by Whole Numbers	165	3 pages
Practicing With Fractions	168	2 pages
Mixed Review Chapter 7	170	2 pages
Sample worksheet from	172	2 pages
https://www.mathmammoth.com		

Helpful Resources and Games on the Internet

FRACTIONS AND MIXED NUMBERS

Identifying Fractions at Conceptua Fractions

A tool that shows fractions or mixed numbers using a pie, a bar, dots, and a number line. https://www.conceptuamath.com/app/tool/identifying-fractions

Number Bonds - Fractions

Combine balls whose fractions add to one. https://www.mathplayground.com/number bonds fractions.html

Puzzle Pics Fractions

Reveal the mystery picture by dragging each puzzle piece to the number line that illustrates the fraction. http://www.mathplayground.com/puzzle_pics_fractions.html

Animal Rescue: Fractions Number Line Game

Find and free the trapped animals by moving the arrow to the correct place on the number line. http://www.sheppardsoftware.com/mathgames/fractions/AnimalRescueFractionsNumberLineGame.htm

Clara Fraction's Ice Cream Shop

Convert improper fractions into mixed numbers, and scoop the right amount of ice cream flavors onto the cone for your customers.

https://mrnussbaum.com/clara-fraction-s-ice-cream-shop-online-game

Mixed Numbers and Improper Fractions

Practice converting mixed numbers to improper fractions. https://www.mathplayground.com/fractions_mixed.html

ADDITION AND SUBTRACTION

Adding of Like Fractions with Circle Models

Practice adding fractions with the help of a visual model. http://www.visualfractions.com/AddEasyCircle/addcircles.html

Fractions Workshop

Choose "Add mixed fractions with like denominators" in order to practice adding mixed numbers. https://mrnussbaum.com/fraction-workshop-online

Action Fraction

A racing game with several levels where you add and subtract fractions. The levels advance from using like fractions to using unlike fractions and eventually subtraction. http://solvemymath.com/math_games/arithmetic_games/action_fraction/

Add Mixed Numbers: 10-Question Quiz

Practice adding mixed numbers. Express the answer as a mixed fraction in lowest terms. http://www.thatquiz.org/tq-3/?-j301-l1-p0

Fraction Game

Move the markers on the fraction number line from left to right according to the given fraction cards. http://illuminations.nctm.org/Activity.aspx?id=4148

Four-Sum Fractions Board Game

Practice adding and simplifying fractions with common denominators. Be the first player to score four in a row! http://www.learn-with-math-games.com/fraction-math-games.html

Subtracting Mixed Numbers with Borrowing

Perform subtraction calculations using borrowing with mixed number fractions. https://www.wisc-online.com/learn/formal-science/mathematics/abm701/subtracting-mixed-number-fractions-with-borro

Subtracting Mixed Fractions Quiz

Practice subtracting mixed fractions in this multiple-choice quiz. Drag and drop corresponding answers. http://www.fractions4kids.com/subtracting-mixed-fractions-quiz/

Fruit Shoot Fractions Addition

Click the fruit with the correct answer. To match the topics students learn in this section, choose adding 2 or 3 fractions with like denominators. You can also choose your mode (untimed or timed) and speed (slow versus fast fruit).

http://www.sheppardsoftware.com/mathgames/fractions/FruitShootFractionsAddition.htm

Fraction Worksheets: Addition and Subtraction

Create custom-made worksheets for the four operations with fractions and mixed numbers. Choose "Like Fractions" for this level.

https://www.homeschoolmath.net/worksheets/fraction.php

EQUIVALENT FRACTIONS

Equivalent Fractions

Draw two equivalent fractions for the given fraction. Choose either a square or a circle for the shape. http://illuminations.nctm.org/Activity.aspx?id=3510

Fresh Baked Fractions

Practice equivalent fractions by clicking on a fraction that is not equal to the others. http://www.funbrain.com/fract/index.html

Fishy Fractions

Feed Ulani the pelican by choosing the fish with the correct equivalent fraction. https://web.archive.org/web/20190901123002/http://streaming.discoveryeducation.com/braingames/iknowthat/Fractions/FractionGame.cfm? Topic=namematch

Free Equivalent Fractions Worksheets

Create custom-made worksheets for equivalent fractions that can either include pie images or not. https://www.homeschoolmath.net/worksheets/equivalent_fractions.php

COMPARING FRACTIONS

Comparison Shoot Out

Choose level 2 or 3 to compare fractions and shoot the soccer ball to the goal. http://www.fuelthebrain.com/games/comparison-shootout/

Comparing Fractions—XP Math

Simple timed practice for comparing two fractions. http://xpmath.com/forums/arcade.php?do=play&gameid=8

Ordering Fractions at Conceptua Fractions

An interactive tool where students place numbers, visual models, and decimals on a number line. https://www.conceptuamath.com/app/tool/comparing-fractions

Ordering Fractions

Drag the fractions into the right order, from lowest to highest. http://www.topmarks.co.uk/Flash.aspx?b=maths/fractions

Dirt Bike Comparing Fractions

Play tug of war while practicing comparing fractions in this interactive online game. https://www.arcademics.com/games/dirt-bike-comparing-fractions

MULTIPLYING FRACTIONS

Multiplying Fractions with Circle Models

This page illustrates fraction multiplication with circle models. http://www.visualfractions.com/MultiplyCircle/

Multiply Fractions by Whole Numbers

Practice multiplying fractions by whole numbers in this simple online exercise. http://www.mathgames.com/skill/4.67-multiply-fractions-by-whole-numbers

Multiplying Fractions Concentration

Practice multiplying fractions by whole numbers with this interactive online matching game. https://www.quia.com/cc/2740524.html

GENERAL

Visual Fractions

Great site for studying all aspects of fractions: identifying, renaming, comparing, addition, subtraction, multiplication, division. Each topic is illustrated with a visual model. Also includes a couple of games. http://www.visualfractions.com/

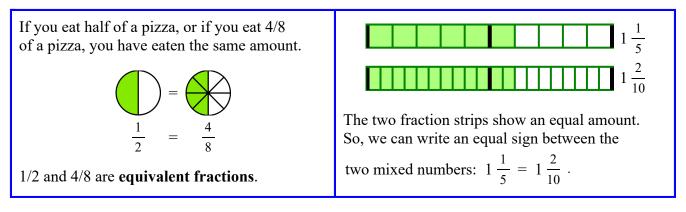
Conceptua Math Fraction Tools

Interactive fraction tools for identifying fractions, adding and subtracting, estimating, comparing, equivalent fractions, finding common denominators and more. Each activity uses several visual models, such as fraction circles, horizontal and vertical bars, number lines, etc. https://www.conceptuamath.com/app/tool-library

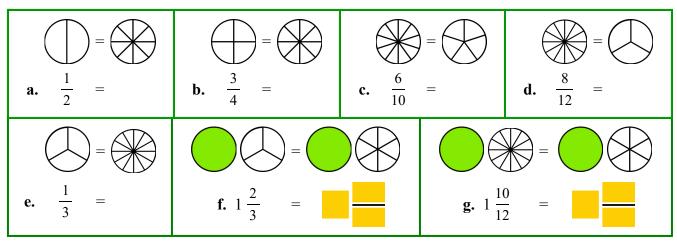
Who Wants Pizza?

This site explains the concept of fractions, addition, and multiplication with a pizza example, then has some interactive exercises.

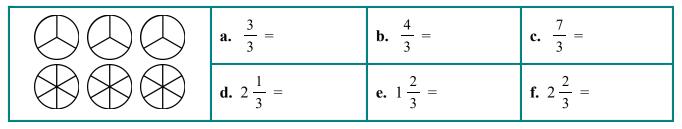
http://math.rice.edu/~lanius/fractions/index.html

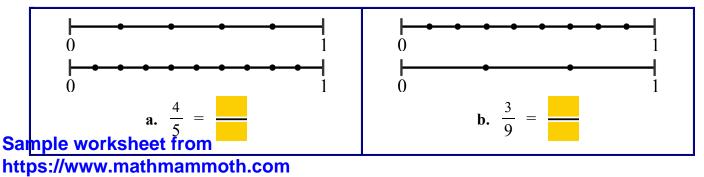

Fractioncity

Make "fraction streets" and help children with comparing fractions, equivalent fractions, addition of fractions of like and unlike denominators while they drive toy cars on the streets. This is not an online activity but has instructions of how to do it at home or at school.

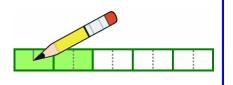

http://www.teachnet.com/lesson/math/fractioncity.html

(This page intentionally left blank.)


Equivalent Fractions

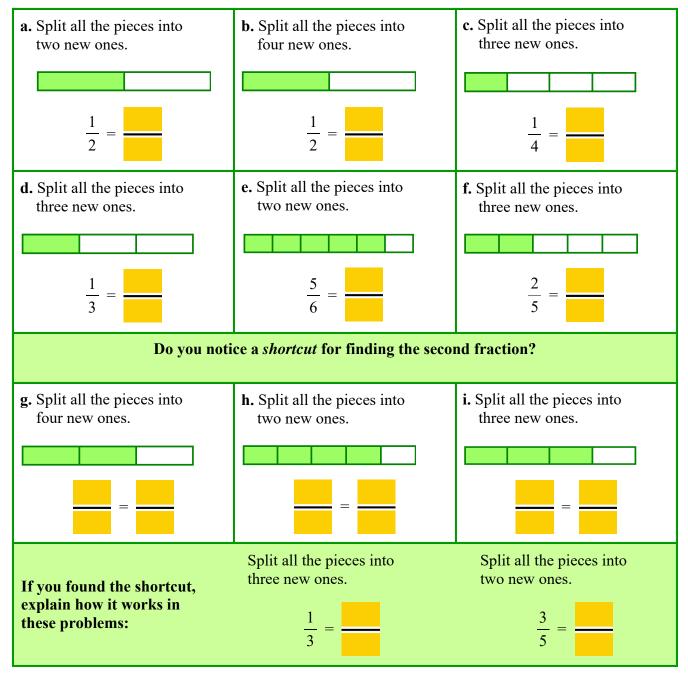

1. Color the first fraction. Shade the same amount of pie in the second picture. Write the second fraction.

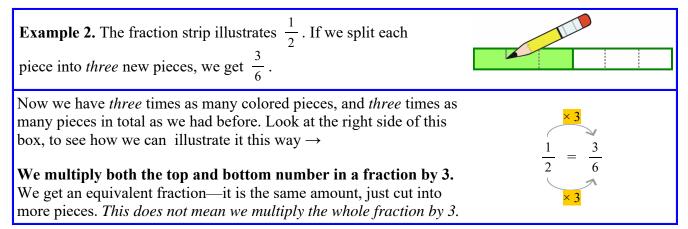
2. Write the fractions that have thirds using sixths instead. You can shade parts in the pictures.



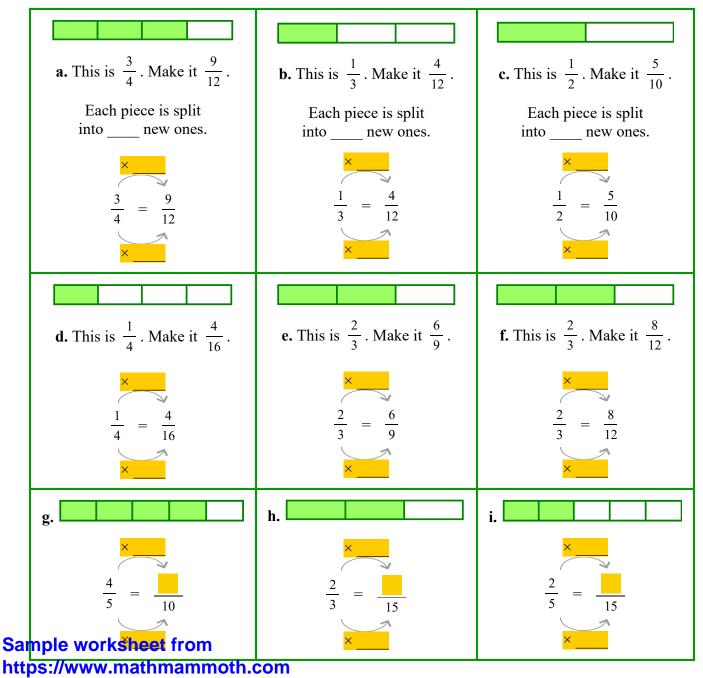
3. Mark the equivalent fractions on the number lines.

Example 1. The fraction strip illustrates $\frac{2}{5}$. If you split each

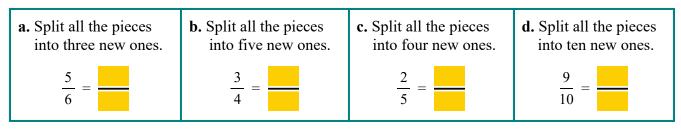

piece (both the colored and white pieces) into *two* new pieces, what fraction do you get?



You get $\frac{4}{10}$: four colored pieces, and ten pieces total.


You have two times as many colored pieces, and two times as many total pieces as before.

4. Split both the colored and white pieces as instructed. Write the fraction after you change it.

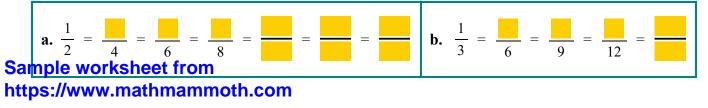


5. Split the pieces. Fill in the missing parts.

6. Write the equivalent fraction. Use multiplication.

7. Figure out how many new pieces the existing pieces were split into. Fill in the missing parts.

a. Pieces were split into new ones.	b. Pieces were split into new ones.	c. Pieces were split into new ones.	d. Pieces were split into new ones.
$\frac{1}{2} = \frac{1}{6}$	$\frac{3}{10} = \frac{30}{10}$	$\frac{2}{5} = \frac{2}{30}$	$\frac{7}{8} = \frac{35}{10}$
e. $\frac{2}{3} = \frac{1}{6}$	f. $\frac{3}{5} = \frac{9}{100}$	g. $\frac{5}{6} = \frac{1}{12}$	h. $\frac{1}{3} = \frac{9}{9}$


8. Write the fractions that have tenths with hundredths instead.

a. $\frac{1}{10} = \frac{1}{100}$	b. $\frac{3}{10} =$	c. $\frac{6}{10} =$	d. $\frac{4}{10} =$	e. $\frac{13}{10} =$
--	----------------------------	----------------------------	----------------------------	-----------------------------

9. Connect the equivalent fractions with a line.

	$\frac{2}{3}$	$\frac{1}{3}$		$\frac{1}{2}$	$\frac{2}{10}$		$\frac{3}{6}$	$\frac{3}{12}$
	$\frac{1}{4}$	$\frac{1}{2}$		$\frac{3}{4}$	$\frac{1}{3}$		$\frac{1}{4}$	$\frac{1}{2}$
a.	$\frac{5}{10}$	$\frac{2}{8}$	b.	$\frac{1}{5}$	$\frac{6}{12}$	c.	$\frac{1}{3}$	$\frac{8}{12}$
	$\frac{2}{6}$	$\frac{6}{9}$		$\frac{4}{12}$	$\frac{9}{12}$		$\frac{2}{3}$	$\frac{4}{12}$

10. Write chains of equivalent fractions!



We can use equivalent fractions to add fractions that have different denominators. Example 3. Add $\frac{2}{10} + \frac{17}{100}$. First, write 2/10 as 20/100 (an equivalent fraction). Then you can add, because the fractions now have the same denominator: $\frac{20}{100} + \frac{17}{100} = \frac{37}{100}$.

11. Add.

a. $\frac{1}{10} + \frac{8}{100}$ $\downarrow \qquad \downarrow$ $\frac{1}{100} + \frac{8}{100} =$	b. $\frac{7}{10} + \frac{3}{100}$ $\downarrow \qquad \downarrow$ $\frac{1}{100} + \frac{1}{100} =$	c. $\frac{45}{100} + \frac{3}{10}$
d. $\frac{9}{10} + \frac{9}{100}$	e. $\frac{7}{10} + \frac{23}{100}$	f. $\frac{24}{100} + \frac{9}{10}$
g. $\frac{7}{100} + 1\frac{4}{10}$	h. $2\frac{28}{100} + 1\frac{5}{10}$	$\mathbf{i.} \frac{6}{10} + \frac{35}{100} + \frac{7}{100}$

12. Draw a picture showing that 1/3 and 4/12 are equivalent fractions.

(This page intentionally left blank.)

Chapter 8: Decimals Introduction

In fourth grade, students learn about decimal numbers that have one or two decimal digits, and they learn to add and subtract them. It is important to grasp these simple topics well because we are laying a groundwork for fifth and sixth grades where decimal operations take "center stage."

The focus is, first of all, on understanding that decimals are simply fractions with a denominator of 10 or 100. Then with that in mind, we study comparing, adding, and subtracting them.

Take note of this common misconception that students have. Many students add 0.5 + 0.9 = 0.14. The correct way to view 0.5 + 0.9 is as 5 tenths plus 9 tenths, which is 14 tenths = 1.4.

An example of another misconception is when a student adds 0.5 + 0.11 = 0.16. This student is thinking of the decimal parts as if they were "whole numbers" and adding 5 + 11 = 16. To solve 0.5 + 0.11 correctly, students can rewrite 0.5 as 0.50, and then the problem becomes 0.50 + 0.11 = 0.61.

In the lesson *Using Decimals with Measuring Units*, students encounter decimals in connection with metric units, such as 0.1 km or 2.4 kg, and they also convert between the units, such as writing 0.5 km as 500 m. This topic will be studied further in 5th grade.

nage

snan

The Lessons in Chapter 8

	P8-	SP
Decimal Numbers—Tenths	177	2 pages
Adding and Subtracting with Tenths	179	2 pages
Two Decimal Digits—Hundredths	181	4 pages
Add and Subtract Decimals in Columns	185	3 pages
Add and Subtract Decimals Mentally	188	4 pages
Using Decimals with Measuring Units	192	2 pages
Mixed Review Chapter 8	194	2 pages
Review Chapter 8	196	2 pages

Helpful Resources on the Internet

Fractions & Decimals Matching Game

Practice converting fractions to decimals while also uncovering a hidden picture in this fun matching game!

https://www.mathmammoth.com/practice/fractions-decimals

Decimal Place Value - Hundredths

Practice identifying numbers that have two decimal digits with this interactive multiple-choice quiz. http://www.henryanker.com/Math/Number_Sense/Writing_Numbers/Writing_Decimals_100ths.swf

Modeling Decimals (Area and Grid Models)

An interactive "gizmo" for modeling decimals in a grid or on a number line. It is by subscription, but you can try the gizmo for 5 minutes for free. http://www.explorelearning.com/index.cfm?method=cResource.dspDetail&ResourceID=1007

Decimals on a Number Line

This multiple-choice quiz asks questions about the position of letters on the number line. http://www.henryanker.com/Math/Fractions/Number_Line_Fractions_Decimals/Decimals_on_Number_Line_1.swf

Printable Math Puzzles

This page has several brain teasers and puzzles which will help the student apply and practice their math skills to solve a range of challenges and number problems. https://www.math-salamanders.com/printable-math-puzzles.html

Decimal Challenge

Guess the decimal number between 0 and 10. Each time you get a response that tells whether your guess was too high or too low.

http://www.interactivestuff.org/sums4fun/decchall.html

Switch

Switch the decimals around until they are in ascending order. Refresh the page from your browser to get another problem to solve.

http://www.interactivestuff.org/sums4fun/switch.html

Scales

Move the pointer to match the decimal number given to you. Refresh the page from your browser to get another problem to solve.

http://www.interactivestuff.org/sums4fun/scales.html

Fraction/Decimal Worksheets

Change fractions to decimal numbers or decimal numbers to fractions. http://www.homeschoolmath.net/worksheets/fraction-decimal.php

Fraction Snake Game

Arrange the numbers on the snake in order from the largest on the head to the smallest at the tail. http://www.transum.org/software/SW/fracorder/fraction_order.asp

Rock Hopper

Help the frog reach the other side of the pond by clicking on the rocks that add up to the correct answer. http://www.eduplace.com/kids/mw/swfs/rockhopper_grade4.html

Bubble Burst

Burst the bubble that has the correct answer to the decimal addition. http://www.mathnook.com/math/bubbleburst.html

Decimals Quiz

Practice adding and subtracting decimals in this 10-question quiz. https://www.thatquiz.org/tq-3/?-j163-l5-p0

Decimal Subtraction - Matching

Match each decimal subtraction with the correct answer. Sample workspect from com/mathgames/decimals/matchingDecimalsMinus.htm https://www.mathmammoth.com

Decimal Mania - Addition and subtraction

Practice decimal addition and subtraction with this interactive exercise. http://cemc2.math.uwaterloo.ca/mathfrog/english/kidz/addsubdec.shtml

Adding Decimals: Hundredths

Practice adding numbers that have two decimal digits in this interactive online activity. https://www.khanacademy.org/math/arithmetic/arith-decimals/arith-review-add-decimals/e/adding_decimals

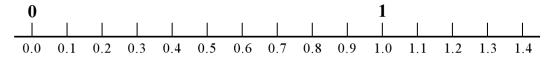
Get to the (Decimal) Point Addition and Subtraction card games (pp. 60-63 of the PDF file)

This is a card game with four different variations that practice decimal addition and subtraction. http://www.pepnonprofit.org/uploads/2/7/7/2/2772238/acing_math.pdf

Decimals Magic Square

Add and subtract decimals to make a "magic square". Add to find a magic sum and subtract to find the missing addends.

http://www.hbschool.com/activity/elab2004/gr4/14.html


Convert units (metrics)

Practice converting between metric units of measurement in this interactive online exercise. https://www.khanacademy.org/math/cc-fifth-grade-math/imp-measurement-and-data-3/imp-unit-conversion/e/converting-units (This page intentionally left blank.)

Adding and Subtracting with Tenths

You already know how to add or subtract decimals that have tenths, such as $0.8 + 0.5$. They are just fractions with a denominator of 10. Compare the two additions in each box. One of them is written with decimals and the other with fractions.	$0.1 + 0.5 = 0.6$ $\frac{1}{10} + \frac{5}{10} = \frac{6}{10}$	$8.4 - 2.3 = 6.1$ $8\frac{4}{10} - 2\frac{3}{10} = 6\frac{1}{10}$
There is one tricky thing: $0.6 + 0.7$ is <u>NOT</u> 0.13!	0.6 + 0.7 = 1.3	1.5 + 0.9 = 2.4
To see why, add the corresponding fractions. Notice that six-tenths and seven-tenths makes thirteen-tenths, which is more than one!	$\frac{6}{10} + \frac{7}{10} = \frac{13}{10} = 1\frac{3}{10}$	$1\frac{5}{10} + \frac{9}{10} = 2\frac{4}{10}$

1. Write an addition *or* subtraction sentence for each "number-line jump.

a. You are at 0.7, and you jump *five tenths* to the right.

b. You are at 0.6, and you jump *eight tenths* to the right.

c. You are at 1.1, and you jump *eight tenths* to the left.

- d. You are at 1.3, and you jump *four tenths* to the left.
- e. You are at 0.2, and you jump *eleven tenths* to the right.
- 2. Solve the fraction additions, and then write them using decimals.

a. $\frac{2}{10} + \frac{7}{10} =$	b. $\frac{5}{10}$ + $\frac{6}{10}$ =	c. $\frac{9}{10}$ + $\frac{8}{10}$ =
0.2 +		

3. Add or subtract.

	a.	b.	с.	d.	
	0.9 + 0.2 =	0.5 + 0.7 =	0.8 + 0.7 =	1.8 - 0.9 =	
Sar	nþl e +vlork <u>sheet fr</u> o	m .5 + 0.7 =	0.8 + 2.7 =	5.8 - 0.9 =	
https://www.mathmammoth.com					

4. Calculate.

a.	b.	с.	d.
2.3 + 0.9 =	1.5 + 0.7 =	6.6 - 0.5 =	4.7 - 1.7 =

5. Write the numbers.

a. 3 tenths, 5 ones

b. 7 tens, 8 ones, 4 tenths

c. 4 tenths, 3 ones, 6 tens

 T
 O
 te

 4
 7
 .
 5

In this place value chart, "T" means tens, "O" means ones, and "te" means tenths.

We can see that the number 47.5 has 4 tens, 7 ones, and 5 tenths.

	6. Continue the patterns	by adding or	subtracting the sam	e number repeatedly.
--	--------------------------	--------------	---------------------	----------------------

a. 0.1	b. 1.1	c. 2.5	d. 3.6
+ 0.2 =	+ 0.5 =	+ 0.3 =	- 0.4 =
+ 0.2 =	+ 0.5 =	+ 0.3 =	- 0.4 =
+ 0.2 =	+ 0.5 =	+ 0.3 =	- 0.4 =
+ 0.2 =	+ 0.5 =	+ 0.3 =	- 0.4 =
+ 0.2 =	+ 0.5 =	+ 0.3 =	- 0.4 =
+ 0.2 =	+ 0.5 =	+ 0.3 =	- 0.4 =

7. Remember: 1 millimeter is one-tenth of a centimeter. Or, 1 mm = 0.1 cm.

a. Draw a line that is 4.7 cm long.	b. Measure the line in centimeters. Use a decimal.		
$\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}$	1 2 3 4 5		

8. In (a) and (b), convert. In (c), add and give your answer in centimeters.

a. $0.5 \text{ cm} = _ mm$ **b.** $7 \text{ mm} = _ mm$ **c.** $5 \text{ mm} + 0.9 \text{ cm} = _ mm$ $1.2 \text{ cm} = _ mm$ $35 \text{ mm} = _ mm$ $4 \text{ cm} + 3.4 \text{ cm} = _ mm$

9. The two sides of a rectangle measure 6.5 cm and 3.6 cm. Draw the rectangle on blank paper. What is its perimeter?