Multiplying Integers

Multiply a positive times a negative

The image illustrates $4 \times(-2)$ as four groups of two negatives. We can solve it using repeated addition:

$4 \times(-2)=(-2)+(-2)+(-2)+(-2)=-8$.
As a shortcut, just multiply the "plain numbers" 4 and 2 , and write the answer as negative.
Example. $7 \times(-8)=$?
This is illustrated by 7 groups of 8 negatives, which means the answer will be negative.
We multiply $7 \times 8=56$ to find how many negatives there are. The final answer is $7 \times(-8)=-56$.

1. Multiply.

a. $5 \times(-4)=\ldots$	b. $8 \times(-1)=\ldots$	
$12 \times(-2)=\ldots$	$7 \times(-6)=$	c. $9 \times(-9)=$
	$10 \times(-7)=$	

2. Write each addition as a multiplication, and solve.

a. ${ }^{-} 4+{ }^{-} 4+{ }^{-} 4+{ }^{-} 4$	b. ${ }^{-} 31+{ }^{-} 31$	c. ${ }^{-} 200+{ }^{-} 200+{ }^{-} 200$
$=\ldots \ldots$	$=\ldots \ldots$	$=\ldots$

Multiply a negative times a positive

To solve (-8) $\times 4$ or -5×6 or (a negative number times a positive number), we can "turn them around" because multiplication is commutative.
$(-8) \times 4$ is the same as $4 \times(-8)=-32$.
-5×6 is the same as $6 \times(-5)=-30$.
BUT, $-5 \times 0=0$. Zero is not written as -0 , but as 0 .
So, a negative times a positive gives a negative answer.
3. Multiply.

a. $-5 \times 7=\ldots$	b. $(-9) \times 1=\ldots$	
$11 \times(-3)=\ldots$	$-8 \times 8=$	c. $(-9) \times 0=$

Multiply a negative times a negative

What is $(-8) \times(-4)$ or $-5 \times(-6)$?
This baffled real mathematicians in the past, too, so don't worry if the answer sounds confusing!
A negative times a negative number gives a positive result!
So, $(-8) \times(-4)=32$ and $-5 \times(-6)=30$.
Why? We will explore that in the exercise below.
4. Complete the patterns.

a. $\begin{aligned} & (-3) \times 3= \\ & (-3) \times 2= \\ & (-3) \times 1= \\ & (-3) \times 0= \\ & (-3) \times(-1)= \\ & (-3) \times(-2)= \\ & (-3) \times(-3)= \\ & (-3) \times(-4)= \end{aligned}$	b. $\begin{aligned} & (-5) \times 3= \\ & (-5) \times 2= \\ & (-5) \times 1= \\ & (-5) \times 0= \\ & (-5) \times(-1)= \\ & (-5) \times(-2)= \\ & (-5) \times(-3)= \\ & (-5) \times(-4)= \end{aligned}$	c. $\begin{aligned} & (-8) \times 3= \\ & (-8) \times 2= \\ & (-8) \times 1= \\ & (-8) \times 0= \\ & (-8) \times(-1)= \\ & (-8) \times(-2)= \\ & (-8) \times(-3)= \\ & (-8) \times(-4)= \end{aligned}$
In the above pattern, the products (answers) increase by 3 in each step!	In the above pattern, the products (answers) increase by \qquad in each step!	In the above pattern, the products (answers) increase by \qquad in each step!
It follows that the negative times negative products in the patterns must be positive.		

5. Multiply.

a. $-5 \times 4=\ldots$	b. $(-9) \times(-2)=\ldots$	
$-5 \times(-4)=\ldots$	$2 \times(-11)=$	c. $(-3) \times 30=$
$-7 \times(-80)=$		

6. Find the missing factors.

a. $4 \times \ldots=-32$	b. $-9 \times \ldots=108$	c. $9 \times \ldots=-900$
d. $-4 \times \ldots=32$	e. $-9 \times \ldots=900$	

7. Multiply, and solve the riddle. What is black when it is clean, and white when it is dirty?

8. The points $(-2,1),(0,0)$, and $(-1,2)$ are vertices of a triangle.
a. Draw the triangle.
b. Multiply each coordinate of each point by 2 , to get three new points. Write the coordinates of the new points:
c. Draw a new triangle using the three points from (b) as vertices.
d. Repeat this, multiplying the coordinates of the original three points by 3 .

What you just did was enlarge the original triangle. The original and the two new triangles are similar
 triangles - they have the same shape.
(Optional) Another justification for the rule "Negative times negative makes positive"
This justification can be seen using the distributive property. The distributive property of arithmetic states that $a(b+c)=a b+a c$. For example, $4 \times(3+5)=4 \times 3+4 \times 5$.
Let's see what happens if $a=-1, b=3$, and $c=-3$. We get $(-1)[3+(-3)]=(-1)(3)+(-1)(-3)$
Now, since $3+(-3)$ on the left side is zero, the whole left side is zero (-1 times zero equals zero).
So the right side, $(-1)(3)+(-1)(-3)$, must be zero as well!
On the right side, $(-1)(3)$ is -3 . It follows that $(-1)(-3)$ has to be 3 . That is the only way to make the right side equal zero. Therefore, $(-1)(-3)$ is positive 3.
This same argument can be made using a, b, and $-b$ (variables instead of specific numbers). According to the distributive property: $a[b+(-b)]=a b+a(-b)$. The left side is always zero because $b+(-b)=0$. Now, if a is negative, and b is positive, then on the right side $a b$ is negative (positive times a negative). Then, $a(-b)$ MUST be positive so the right side can add up to zero.
So, if we made "Negative times negative" to be negative, then distributive property wouldn't hold for negative numbers. But mathematicians do want it to hold to keep mathematics a very consistent system. So, mathematicians have decided that negative times negative has to be positive.

The History of Negative Numbers: http://nrich.maths.org/public/viewer.php?obi_id=5961
Negative Numbers: http://www.classzone.com/books/algebra_1/page build.cfm?content=links_app3_ch2

Sample worksheet from
 www.mathmammoth.com

