
Multiplying Integers

Multiply a positive times a negative

The image illustrates $4 \times (-2)$ as four groups of two negatives. We can solve it using repeated addition:

 $4 \times (-2) = (-2) + (-2) + (-2) + (-2) = -8.$

As a shortcut, just multiply the "plain numbers" 4 and 2, and write the answer as negative.

Example. $7 \times (-8) = ?$

This is illustrated by 7 groups of 8 negatives, which means the answer will be negative. We multiply $7 \times 8 = 56$ to find how many negatives there are. The final answer is $7 \times (-8) = -56$.

1. Multiply.

a. $5 \times (-4) =$	b. $8 \times (-1) =$	c. $9 \times (-9) =$
12 × (-2) =	7 × (-6) =	10 × (-7) =

2. Write each addition as a multiplication, and solve.

a. $-4 + -4 + -4 + -4$	b. -31 + -31	c. $-200 + -200 + -200$
= × =	= × =	=×=

Multiply a negative times a positive

To solve $(-8) \times 4$ or -5×6 or (a negative number times a positive number), we can "turn them around" because multiplication is commutative.

 $(-8) \times 4$ is the same as $4 \times (-8) = -32$.

 -5×6 is the same as $6 \times (-5) = -30$.

BUT, $-5 \times 0 = 0$. Zero is not written as -0, but as 0.

So, a negative times a positive gives a negative answer.

3. Multiply.

a.
$$-5 \times 7 =$$

b. $(-9) \times 1 =$ _____
c. $(-9) \times 0 =$ _____

 $11 \times (-3) =$ _____
 $-8 \times 8 =$ _____
 $8 \times (-5) =$ _____

Sample worksheet from www.mathmammoth.com

Multiply a negative times a negative

What is $(-8) \times (-4)$ or $-5 \times (-6)$?

This baffled real mathematicians in the past, too, so don't worry if the answer sounds confusing!

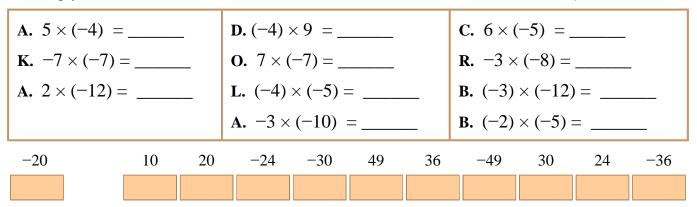
A negative times a negative number gives a **positive** result!

So, $(-8) \times (-4) = 32$ and $-5 \times (-6) = 30$.

Why? We will explore that in the exercise below.

4. Complete the patterns.

a.	b.	с.
(-3) × 3 =	(-5) × 3 =	(-8) × 3 =
(-3) × 2 =	(-5) × 2 =	(-8) × 2 =
(-3) × 1 =	(-5) × 1 =	(-8) × 1 =
(-3) × 0 =	(-5) × 0 =	(-8) × 0 =
$(-3) \times (-1) = $	(-5) × (-1) =	(−8) × (−1) =
$(-3) \times (-2) = $	$(-5) \times (-2) = $	(−8) × (−2) =
$(-3) \times (-3) = $	(-5) × (-3) =	(−8) × (−3) =
(-3) × (-4) =	$(-5) \times (-4) = $	(-8) × (-4) =
In the above pattern, the products (answers) increase by 3 in each step!	In the above pattern, the products (answers) increase by in each step!	In the above pattern, the products (answers) increase by in each step!
It follows that the <i>negative times</i> i	negative products in the patterns mu	ist be <u>positive</u> .


5. Multiply.

a. $-5 \times 4 =$	b. $(-9) \times (-2) = $	c. $(-3) \times 30 =$
$-5 \times (-4) =$	2 × (-11) =	-7 × (-80) =

6. Find the missing factors.

a. $4 \times ___ = -32$	b. $-9 \times ___ = 108$	c. $9 \times ___ = -900$
d. $-4 \times ___ = 32$	e. $-9 \times ___ = -108$	f. $-9 \times __= 900$

Sample worksheet from www.mathmammoth.com 7. Multiply, and solve the riddle. What is black when it is clean, and white when it is dirty?

- 8. The points (-2, 1), (0, 0), and (-1, 2) are vertices of a triangle.
 - **a.** Draw the triangle.
 - b. Multiply each coordinate of each point by 2, to get three new points.Write the coordinates of the new points:
 - **c.** Draw a new triangle using the three points from (b) as vertices.
 - **d.** Repeat this, multiplying the coordinates of the original three points by 3.

What you just did was *enlarge* the original triangle. The original and the two new triangles are *similar triangles*—they have the same shape.

	У			
	8			
	7			
	6			
	5			
	4			
	3			
	2			
	1			
-9 -8 -7 -6 -5 -4	-3 -2 -1 1	234	567	8 9 x
-9 -8 -7 -6 -5 -4	-3 -2 -1 1	234	567	8 9 x
-9 -8 -7 -6 -5 -4	-3 -2 -1 1	234	567	8 9 x
-9 -8 -7 -6 -5 -4	-1	234	567	8 9 x
-9 -8 -7 -6 -5 -4	-1 -2 -3	234	567	8 9 x
-9 -8 -7 -6 -5 -4	-1 -2 -3 -4	2 3 4	5 6 7	8 9 x
-9 -8 -7 -6 -5 -4	-1 -2 -3 -4 -5	234	5 6 7	8 9 x
-9 -8 -7 -6 -5 -4	-1 -2 -3 -4 -5 -5 -6	234	567	8 9 x
-9 -8 -7 -6 -5 -4	-1 -2 -3 -4 -5	234	567	8 9 x

(Optional) Another justification for the rule "Negative times negative makes positive"

This justification can be seen using the distributive property. The distributive property of arithmetic states that a(b + c) = ab + ac. For example, $4 \times (3 + 5) = 4 \times 3 + 4 \times 5$.

Let's see what happens if a = -1, b = 3, and c = -3. We get (-1)[3 + (-3)] = (-1)(3) + (-1)(-3)

Now, since 3 + (-3) on the left side is zero, the whole left side is zero (-1 times zero equals zero). So the right side, (-1)(3) + (-1)(-3), must be zero as well!

On the right side, (-1)(3) is -3. It follows that (-1)(-3) has to be 3. That is the only way to make the right side equal zero. Therefore, (-1)(-3) is *positive 3*.

This same argument can be made using a, b, and -b (variables instead of specific numbers). According to the distributive property: a[b + (-b)] = ab + a(-b). The left side is always zero because b + (-b) = 0. Now, if a is negative, and b is positive, then on the right side ab is negative (positive times a negative). Then, a(-b) MUST be positive so the right side can add up to zero.

So, if we made "*Negative times negative*" to be negative, then distributive property wouldn't hold for negative numbers. But mathematicians do want it to hold to keep mathematics a very consistent system. So, mathematicians have decided that negative times negative has to be positive.

The History of Negative Numbers: <u>http://nrich.maths.org/public/viewer.php?obj_id=5961</u> Negative Numbers: <u>http://www.classzone.com/books/algebra_1/page_build.cfm?content=links_app3_ch2</u>