2. Can you figure out how to simplify in these cases? Follow the example
a. "Old way":
$\frac{4}{5} \times \frac{5}{9}=\frac{4 \times 5}{5 \times 9}=\frac{20}{45}=\frac{4}{9}$

Simplify first:
$\frac{4}{5} \times \frac{5}{9}=$
d. "Old way":
$\frac{5}{8} \times \frac{4}{5}=\square=$
Simplify first:
$\frac{5}{8} \times \frac{4}{5}=$
b. "Old way":
$\frac{2}{3} \times \frac{3}{10}=\square=$
Simplify first:
$\frac{2}{3} \times \frac{3}{10}=$
e. "Old way":
$\frac{1}{8} \times \frac{8}{11}=\square=$
Simplify first:
$\frac{1}{8} \times \frac{8}{11}=$
c. "Old way":
$\frac{7}{10} \times \frac{3}{7}=\square=$
Simplify first:

$$
\frac{7}{10} \times \frac{3}{7}=
$$

f. "Old way":

$$
\frac{6}{11} \times \frac{11}{6}=
$$

Simplify first:
$\frac{6}{11} \times \frac{11}{6}=$

You can cross out the same number above the line and below the line: $\frac{4}{5} \times \frac{5}{9}=\frac{4}{9}$

Why does this work? Compare how it is written using \div instead of a fraction line:
$\frac{4}{5} \times \frac{5}{9}=4 \div 5 \times 5 \div 9$. Note how there is again both division by 5 and multiplication by 5 .
That is why we can simplify or "cross" those fives out. Similarly,
$\frac{8}{7} \times \frac{3}{8}=\mathbf{8} \div 7 \times 3 \div \mathbf{8}$. There is 8 and there is division by 8 , so $\frac{8}{7} \times \frac{3}{8}=\frac{3}{7}$.

You can simplify a fraction before multiplying.
In the example here $3 / 6$ is simplified to $1 / 2$ before the multiplication process, which makes it much easier.

$$
\frac{1}{6} \times \frac{5}{8}=\frac{5}{16}
$$

Why does this work? Obviously we can write $\frac{1}{2}$ instead of $\frac{3}{6}$ since they are equivalent.
3. Simplify before multiplying.
a. $\frac{6}{10} \times \frac{1}{7}=$
b. $\frac{2}{4} \times \frac{5}{15}=$
c. $\frac{8}{32} \times \frac{14}{21}=$
c. $\frac{8}{12} \times \frac{1}{2}=$
d. $\frac{6}{15} \times \frac{6}{9}=$
f. $\frac{27}{45} \times \frac{21}{49}=$

