2. Can you figure out how to simplify in these cases? Follow the example

You can cross out the same number above the line and below the line: $\frac{4}{5} \times \frac{5}{9} = \frac{4}{9}$

Why does this work? Compare how it is written using ÷ instead of a fraction line:

 $\frac{4}{5} \times \frac{5}{9} = 4 \div \frac{5}{5} \times \frac{5}{5} \div 9$. Note how there is again both division by 5 and multiplication by 5.

That is why we can simplify or "cross" those fives out. Similarly,

 $\frac{8}{7} \times \frac{3}{8} = \mathbf{8} \div 7 \times 3 \div \mathbf{8}$. There is 8 and there is division by 8, so $\frac{\mathbf{8}}{7} \times \frac{3}{\mathbf{8}} = \frac{3}{7}$.

You can simplify a fraction before multiplying. In the example here 3/6 is simplified to 1/2 before the multiplication process, which makes it much easier.	$\frac{\frac{1}{2}}{\frac{6}{5}} \times \frac{5}{8} = \frac{5}{16}$
Why does this work? Obviously we can write $\frac{1}{2}$ instead of $\frac{3}{6}$	$\frac{2}{5}$ since they are equivalent.

3. Simplify before multiplying.

a. $\frac{6}{10} \times \frac{1}{7} =$ **b.** $\frac{2}{4} \times \frac{5}{15} =$ **c.** $\frac{8}{32} \times \frac{14}{21} =$ **c.** $\frac{8}{12} \times \frac{1}{2} =$ **d.** $\frac{6}{15} \times \frac{6}{9} =$ **f.** $\frac{27}{45} \times \frac{21}{49} =$

Sample worksheet from www.MathMammoth.com