Multiplying Powers

1. Write using exponents or simplify.

c.
$$2 \cdot p \cdot m \cdot m \cdot p \cdot m$$

b.
$$b + b + b + b$$

d.
$$a + a + a + b + b$$

2. Complete.

a.
$$(p^2)(p^3) = (p \cdot p)(\cdot \cdot \cdot) = p$$

c.
$$(2w^5)^2 = ($$
 $)($ $) = w$

b.
$$(p^2)^3 = (p^2)(1)(1) = p$$

d.
$$(-5p)^3 = ()()()$$

3. Here are some errors. Fix them.

a.
$$(3p)^2 = 3p^2$$

b.
$$6(ab)^2 = 6ab^2$$

c.
$$(2x^3)(4x^7) = 8x^{21}$$

d.
$$(2x^2y)^5 = 32x^2y^5$$

4. Simplify.

a.
$$(m^2)(m^7)(2n)(5n)$$

b.
$$(x^2y)(x^4y^6)$$

c.
$$(ab^3)^5$$

d.
$$(4r)^2$$

e.
$$(3s^5)^2$$

f.
$$-2(xy)^4$$

g.
$$(0.1\text{w})^2(10\text{w})^3$$

h.
$$(4s^{10})(2s^3)^2$$

i.
$$(-2x^3)(-2x)^3$$

j.
$$\left(\frac{1}{3}x\right)^3$$

k.
$$\left(-\frac{2}{5}z^2y\right)^2$$

1.
$$\left(\frac{1}{2}xy\right)^3(10x^2y^5)$$

m.
$$\left(\frac{2}{5}x\right)^2(15x^4)$$

n.
$$\left(-\frac{2}{5}\text{m}^2\right)\left(\frac{15}{16}\text{m}^6\right)$$

o.
$$\left(-\frac{2}{3}y\right)^2(-9y)^4$$

p.
$$[(-4)^2]^2$$

q.
$$[(2x)^3]^2$$

r.
$$[(-4a)^2]^4$$

- 5. **a.** Find an integer m so that $(a + b)^m = a^m + b^m$ is true for all real numbers a and b.
 - **b.** Find *a* and *b* so that $(a + b)^2 = a^2 + b^2$.
 - **c.** Find a and b so that $(a + b)^2 \neq a^2 + b^2$.
- 6. Complete the proof that shows what the value of x^0 is.

Let x be any real number, and m be any positive integer > 0. Then, according to the law of multiplication of exponents, $(x^m)(x^0) = x^{m-1} = x^m$.

Looking at the first and the last expressions in the equation above, $(x^m)(x^0) = x^m$

So x^0 must be ____, since that is the only number that does not change the result of multiplication.